【人物】阿基米德

蔡天新 赛先生

上帝乃几何学家。——柏拉图

01 叙拉古城

公元前287年,阿基米德出生在地中海最大的岛屿——西西里东南港市叙拉古(又译锡拉库萨),这个年份是依据他的死亡年份和寿命推算出来的。

12世纪的君士坦丁堡(今伊斯坦布尔)诗人、学家策策斯(Tzetzes)被认为是学究的完美典范,这位诗人的母亲是格鲁吉亚人,年轻时担任省长秘书,后来以教书和写作为生。他最著名的一部拜占庭重音(教诲)诗集《千千诗集》(又名《史书》)共一万二千多行,引用作家达四百多人,包含了许多轶文。其中提到,“智者阿基米德是叙拉古人,著名的机械制造师,终生研究几何学,活到七十五岁。”

叙拉古的奥提伽岛,阿基米德在此抗击罗马人

阿基米德原本是有传记的,作者是他的一位叫赫拉克利德(Heraclides)的朋友。赫拉克利德与公元前6世纪的哲学家赫拉克利特(Heracleitus)不是同一个人,也非同一个时代。还有一位公元前4世纪的天文学家赫拉克利德斯(Heracleides)名字也很相近,后者是柏拉图的学生和学园管理者,曾率先提出地动说,并认为水星和金星是绕日旋转的。6世纪的数学注释家欧托基奥斯(Eutocius)曾不止一次提到这本传记,可惜后来失传了。阿基米德的生平事迹,如同米利都的泰勒斯一样,散见于古代的各种文献中。

古希腊共有四个主要部落,分别是亚加亚人(迈锡尼人)、爱奥尼亚人、多利安人和伊奥尼亚人。叙拉古住着多利安人,稍北的卡塔尼亚住着爱奥尼亚人;一水之隔的亚平宁半岛最南端住着伊奥尼亚人(泰勒斯被认为是伊奥尼亚学派的创建人),稍北的毕达哥拉斯学园所在地塔兰托则住着迈锡尼人,他们说着不同的方言。

多利安人最早出现在荷马史诗《奥德赛》中,他们生活在克里特岛上。追根溯源,多利安人可能来自巴尔干岛北部,后迁移到伯罗奔尼撒半岛、罗德岛、克里特岛和西西里岛东部地区。叙拉古的多利安人多是从科林斯移民来的,那是在伯罗奔尼撒半岛与希腊本土的接壤处。

沉思的阿基米德。意大利画家费蒂作于1620年

大约在阿基米德出生前一个世纪,叙拉古人建立起一个帝国,他们向北把势力扩大到意大利南部,向南与迦太基(今北非突尼斯)人进行了三次战争,后者是地中海东岸的腓尼基人建立起来的。但在阿基米德出生前两年,叙拉古帝国突然瓦解。

在阿基米德生活的年代,古希腊的鼎盛时期已经过去,经济、文化中心转移到埃及北部的地中海港市亚历山大;与此同时,亚平宁半岛上新兴的罗马帝国,正不断地扩张势力。阿基米德生长在这一新旧交替的时代,而叙拉古城也成为多种势力的角力场所。

阿基米德出身贵族,他的父亲菲迪亚斯是一位天文学家,与早些时候的那位大雕刻家、画家、建筑师同名,却没有亲戚关系,后者曾参与雅典卫城上的巴特农神庙建设。有人因此推断他的爷爷是艺术家,或者至少是艺术爱好者。

可以确认的是,阿基米德从小受父亲影响,喜欢思考和研究。大约在十岁左右,父亲送他到埃及的亚历山大念书,那是当时西方世界的学术中心,有一座著名的大学和图书馆。学者云集,数学、天文学、医学研究较为发达,阿基米德跟随包括欧几里得门徒在内的专家学习,打下了日后从事科学研究的基础。据说他在亚历山大发明了螺旋泵——一种提水的装置,曾被埃及人广泛使用。

02亚历山大

阿基米德在亚历山大求学的经历我们不甚了解,其时赫赫有名的大数学家欧几里得很可能已不在人世,至少离开教学岗位了。因为欧几里得虽然生卒年和出生地不详,但他的执教应大体在托勒密一世统治时期(约公元前323-前285)。在亚历山大期间,阿基米德至少结交了三位同窗或好友,科农(Conon)、多西修斯(Dositheus)和厄拉托色尼(Eratosthenes)。

科农是萨摩斯人,与他的前辈老乡毕达哥拉斯一样,也是一位数学家和天文学家。科农是阿基米德最要好、最信得过的朋友,两人的友谊维持了一生,他后来成为托勒密三世的宫廷天文官。科伦在圆锥曲线方面的工作,成为阿波罗尼奥斯(Apollonius)《圆锥曲线论》第四卷的基础。

厄拉托色尼是北非昔兰尼加(今利比亚拜尔盖)人,他比阿基米德小十来岁,却有着“柏拉图第二”的雅号,后来担任亚历山大图书馆馆长,平素非常讲究穿戴,八十岁时因为双目失明绝食身亡。

厄氏多才多艺,写过十卷本的古代戏剧史,是一位五项全能运动员,他在数学方面创立了筛法,这个方法及其推广如今在数论领域仍十分有用。他测出了地球的周长,与准确的数字只差两百公里;还根据大西洋和印度洋的潮涨潮落情况,推断它们是相通的,15世纪的葡萄牙探险家达·伽马依据此理论从水路到达印度。他还利用极圈和回归线划分出地球的五个气候带,沿用至今。

返回故乡叙拉古以后,阿基米德与科农、厄拉托色尼保持通信,他把《抛物线求积》、《论螺线》、《球柱和圆柱体》的论著寄给科伦,把《论力学定理和方法》和《群牛问题》的论著寄给厄拉托色尼,通过他们也转达给了亚历山大的同行,而两位朋友也把自己的工作告诉阿基米德。

残留在古建筑上的图案,作者摄于西西里

据4世纪的数学家帕波斯(Pappus)所言,著名的阿基米德螺线是科农发现的,现今巴黎二十个区便是依此曲线排列,这个图案还出现在2004年雅典奥运会的闭幕式上。可惜,科农本人的著作均已遗失,包括7卷本的《论天文学》和《答色腊西达库斯》,后者讨论了圆锥曲线和圆的交点问题。

科农去世以后,阿基米德又与科农的学生、研究历法和天气预报的犹太人多西修斯通信,他在信中写道,“听说科农已经死了,他是我非常好的朋友,而你与他十分相熟,又是学习几何的学生……因此我写信给你,寄给你一些几何定理,因为我已经习惯写信告诉科农了。”

从阿基米德其他著作的前言中我们得知,多西修斯在给阿基米德的信中,也经常问起一些数学问题,至于具体内容是什么,无人知晓。无论如何,阿基米德的主要学术成果,均是在与这些亚历山大学者的通信中为人所知并保存下来的。

究其原因,古希腊没有学术刊物,出版书籍也非易事,因此许多学者通过给朋友们写信,向世人宣布自己的学术成果,附信的内容也成为论著的序言。比阿基米德稍晚的阿波罗尼奥斯也是这样做的,他与欧几里得、阿基米德并称为亚历山大黄金时期的三大数学家。

阿波罗尼奥斯年轻时也在亚历山大求学,后来到过小亚细亚米利都北面的帕加马王国,那里有一个大图书馆,规模仅次于亚历山大。他在帕加马认识欧德莫斯(Eudemus)和阿塔罗斯(Attalus),回到亚历山大后,把他的名著《圆锥曲线论》前3卷和后5卷分别寄给欧德莫斯和阿塔罗斯,两人因此在数学史上留名。但此欧德莫斯非数学史家欧德莫斯,后者来自罗德岛,是亚里士多德的学生。

03力学之父

阿基米德是叙拉古统治者希罗王的亲戚,和王子格伦是朋友,格伦后来继承了王位。公元前1世纪的罗马建筑师、作家维特鲁威在其十卷本的名著《建筑学》第九卷中,记叙了阿基米德和希罗王一则千古传诵的故事。

随着希罗王的政治威望和权势的日益提高,他决定建造一个华贵的神龛,内装一个纯金的王冠(wreath,其实是环状花冠),以报答神灵的恩泽。金匠如期完成了任务,本应得到奖赏,偏偏这时候有人告状,说他偷去一部分金子,代之以银子。国王甚为愤怒,却又无法判断真假,便请聪明能干的阿基米德来鉴定。  

起初,阿基米德也想不出好办法。苦闷之际,他到公共浴室洗澡,当浸入放满水的木桶时,一部分水溢出桶外,他的身体顿觉轻飘,于是豁然开朗。阿基米德领悟到,不同质料的物体,虽然重量相同,但因为体积不同,排出的水量也必不相同。根据这一道理,不仅可以判断王冠是否掺假,还可以知道少去的黄金份量。

阿基米德从浴盆里站了起来

阿基米德高兴地跳了起来,赤身裸体地用多利安方言高喊“尤里卡!”意思是,“我找到了!”他不仅揭穿了金匠的劣迹,且将其上升到理论高度,得到流体静力学的浮力原理:物体在流体中减轻的重量,等于排去流体的重量。

这个原理记载在阿基米德的著作《论浮体》中,《建筑学》因为这则故事被数学家们知晓,文艺复兴以后它成为古典时期的建筑名著。另有作者记成是希罗王头上的王冠,如同专家所分析的,这不甚合理,如此轻巧的体积恐不能混入银子,也难以用排水法鉴别真伪。

1500年以后,意大利画家达·芬奇依据《建筑学》第3卷中提出的人体比例要求和黄金分割律,绘出了钢笔素描《维特鲁威人》,后来成为艺术史上最著名的素描,《建筑学》也借此进入了绘画史。其实,维特鲁威本姓波利奥,因为与同时代的诗人、演说家兼历史学家同名,故被后世写成维特鲁威。

在帕波斯的著作《数学汇编》里,记载了阿基米德另外一个有名的杠杆定律的故事。这个定律说的是,如果两个物体与一个支点的距离反比于其重量,则杠杆获得平衡。杠杆定律奠定了力学的基础,阿基米德因此发出豪言壮语:“给我一个支点,我可以移动地球。”(希腊语原文:Δός μοι πᾷ στῶ καὶ τὰν γᾶν κινήσω. 英译:Give me a standing place and I will move the earth.)

其实,准确的说法是,“如果另外有一个地球,就可以站在那儿移动这一个。”这是1世纪罗马帝国时代的希腊传记作家普鲁塔克在《马塞勒斯传》里描写的,阿基米德还向希罗王夸下海口:任何重物都可以用一个给定的力来移动。国王听后大为惊讶,要求阿基米德用事实来证明。

于是阿基米德从国王的船队中选了一艘有三根桅杆的货船,那通常需要很多人花大力气才拖得动。阿基米德安装了一组滑轮,一个人独自握着绳子站在远处,轻而易举地将船拉了过来。而依据5世纪的拜占庭哲学家普罗克洛斯(Procrus)的说法,那是希罗王为托勒密王建造的一艘大船,下水时几乎动用了所有的叙拉古人,而阿基米德凭借自己发明的机械装置,使得国王一个人就把它拖动。

尼加拉瓜邮票上的阿基米德和杠杆原理

国王因此对他佩服得五体投地,并当众宣布,“从现在起,阿基米德说的话我们都要相信。”有趣的是,笔者发现,今天通过巴拿马运河或苏伊士运河上的每一艘巨轮,依然依靠轨道上的滑轮车牵引。

04数学之神

阿基米德不仅出身高贵,内心也具有贵族气质,他对自己的实用发明并不十分看重,这从他流传下来的著作可以看出,那几乎是清一色的数学问题,而机械方面的发明全仰仗他人的记载,但他对机械学的兴趣还是深深地影响了他的数学思想。

《论球与圆柱》可能是阿基米德最得意的数学著作,序言是他给多西修斯的一封信。书中给出了六个定义和五个公理,例如:两点之间的所有连线,以直线最短;以相同的平面曲线为边界的曲面中,以平面的面积最小。最著名的公理也叫阿基米德公理,用现代数学语言来描述就是:任给两个正数a和b,必存在自然数n,使得na > b。从这些定义和公理出发,阿基米德推导出了六十个命题。

例如,阿基米德发现并证明了,球面积等于它的大圆面积的4倍,球体积等于以它的大圆为底、半径为高的圆锥体积的四倍。后者意味着:以球的大圆为底、直径为高的圆柱的体积是球体积的二分之三。实际上,这便是著名的球体积公式:

V={4\over3}\pi R^3

这属于命题34,那也是应他要求刻在自己墓碑上的著名论断。七百年以后,利用3世纪数学家刘徽提出的牟合方盖思想,中国晋朝的数学家祖冲之、祖暅父子也得到了同一结果。

镶嵌在圆锥里的球,阿基米德墓的标志

又如,命题14说的是,正圆锥体的侧面积等于以底面半径与母线的比例中项为半径的圆的面积。实际上,这就等于圆周率、半径和母线三者的乘积。但在古希腊,由于毕达哥拉斯学派发现了\sqrt2的无理性,引发了第一次数学危机,线段的长度是否存在成了问题。

虽说二个世纪以后,欧多克斯(Eudoxus)通过引进不可通约概念,将这一危机化解。不过,数学家仍避免线段的长度概念,这就是为何阿基米德选择用矩形的面积来表达。从阿基米德公理出发,他用穷竭法(method of exhaustion)严格地证明了欧几里得《几何原本》中的一条定理:只要边数足够多,圆外切正多边形的面积与内接正多边形的面积之差可以任意小。

所谓穷竭法是公元前5世纪的雅典演说家、政治家安提芬(Antiphon) 创立的,他在研究“化圆为方”问题时,提出了使用圆内接正多边形面积“穷竭”圆面积的思想。稍后,欧多克斯加以改进,将其定义为:“在一个量中减去比其一半还大的量,不断重复这个过程,可以使剩下的量变得任意小”。

希腊邮票上的阿基米德

阿基米德进一步完善了穷竭法,并将其广泛应用于求解曲面面积和旋转体体积。例如,他通过把[0,1]区间n等分,累加矩形条面积,算出了y=x^2和x轴在该区间上曲边三角形的面积。遗憾的是,用穷竭法计算不同的曲边形面积时,需要采用不同的直边形去逼近,计算过程采用了特殊的技巧,因而不具有一般性,无法推广到一般的曲边梯形。

《圆的测量》是一本内容较薄的著作,只有三个命题,均是有关圆的面积和圆周率的,却同样不可小觑。虽说欧几里得在《几何原本》里讨论了许多圆的性质,却压根没提圆周率的值和圆面积、圆周长的计算公式。

阿基米德弥补了这一不足,其中命题1是这样叙述的:圆的面积等于一个以其周长和半径作两个直角边的直角三角形的面积。简单的说就是:圆的面积等于半径乘半周长。这与中国数学古籍《九章算术》里的说法“半周长半径相乘得积步”,或者公元263年刘徽注释的说法“半周乘半径为圆幂”,是等价的。

命题3给出了圆的周长与直径之比(圆周率)的上下界,即:

3{10\over71}<\pi<3{1\over7}

阿基米德用他的穷竭法,分别计算出了内接和外切正96边形的周长。这也是科学史上首次用上、下界来确定一个量的近似值,同时提供了误差估计。值得一提的是,不等式左右两端都是连分数的渐近形式,换句话说,在不超过7或71的所有分数中,它们是最接近于圆周率值的。阿基米德得到的圆周率是3.14,精确到小数点后两位,这是公元前人类所得到了最精确的结果。在此之前,最好的结果是古埃及人的3.1,而古巴比伦人和后来的《九章算术》给出的结果都是3.0。

在《论锥形体和球形体》中,阿基米德研究了椭圆的面积以及旋转体的体积,进一步深化了穷竭法,十分接近今天的积分法思想。而在《论螺线》一书中,他研究了螺线与出发点的垂线围成的曲线面积,以及螺线的切线,后者用到的微分学的思想。

所谓螺线,是指沿绕一定点匀速旋转的直线作匀速运动的点的轨迹,用牛顿发明的极坐标表示就是r=a\theta。如同20世纪的美国数学史家E·T·贝尔所言,他(阿基米德)比牛顿和莱布尼兹领先两千多年发明了积分学,在他的一个问题(指螺线)中,领先他们发明了微分学。难怪1世纪的罗马博物学家、《自然史》作者普林尼要赞颂阿基米德是“数学之神”。

阿基米德也留传下一部算术著作《沙粒的计算》,这唯一的一部算术著作也可能是他的最后一部著作。这是他为外行人写的一些“机智的妙语”,充满了想象力,他把书献给希罗王的儿子格伦,堪称世界上最早的科普著作。

意大利邮票上的阿基米德

全书只有一个定理,即相当于现今的指数乘法法则。阿基米德先给出了地球、月亮和太阳的大小估计,进而计算出沙粒的数目。不过,如同他事先所说的,这只是一种假设,这些数字与实际出入较大。阿基米德以万为基础,建立新的记数法,使得任何大的数都能表示出来。他算出充满太阳系的沙粒为10^{51}颗,即使是扩充到整个宇宙,也只能容纳10^{63}颗。

最后,我们谈谈阿基米德的数学著作对后世的影响。虽然他的工作很有独创性,比如计算球的表面积和体积公式,用22/7作为圆周率的近似值,但在古代的影响十分有限。他的工作也没有被继承和发扬,没有人试图推广他的旋转体体积公式,即使在8世纪和9世纪他的著作被译成阿拉伯文之后。

随着文艺复兴的到来,包括布鲁内莱斯基(佛罗伦萨大教堂的设计者)和达芬奇这样的巨匠都对阿基米德入迷,前者还有“阿基米德第二”的雅号,但他们看的都是手抄本。1544年,阿基米德的7部希腊文著作在巴塞尔首次印刷,附有拉丁文译文,它们在当时第一流的数学家和物理学家,包括开普勒和伽利略的著作中有所反映。对17世纪的笛卡尔和费尔马,更是产生了巨大的影响。不幸的是,他的《方法论》直到20世纪初才被发现。

05羊皮书稿

1906年,丹麦文献学家海伯格(Heiberg,1854-1928)在君士坦丁堡发现了阿基米德寄给厄拉托色尼的那篇论著《论力学定理和方法》(以下简称《方法论》的羊皮书),此前它被认为已经遗失了,且连阿拉伯文版和拉丁文版也不存在。两年以后,海伯格再次去君士坦丁堡,经过不懈的努力,终于使185页的文字重见天日(除去少数完全看不清)。

在这篇论文中,阿基米德解释了他怎样通过在想象中比较一个已知面积或体积的图形和立体,以及一个未知的图形和立体,从中得到了他要寻求的事实;而一旦知道了事实,那么在数学上证明它就比较容易了。这有点像如今的数论学家,利用想象力和计算机寻找数的规律,再设法证明它;不同的是,这种证明通常很不容易。

在《方法论》中,阿基米德阐明了平衡法。穷竭法主要用来证明结论,却不易发现新的结果。阿基米德用平衡法计算物体的面积或体积,也是依据德谟克利特的原子论思想,先把面积或体积分成许多窄的平行条或薄的平行层。进而阿基米德假设把这些薄片挂在杠杆的一端,使它们平衡于容积和重心都已知的一个图形,而且已知图形的面(体)积一般都是容易求得的。

例如,求球体积时,他把同一个球、圆柱和圆锥放在一起,把球和圆锥的薄片挂在杠杆的一侧,而让圆柱的薄片挂在另一头,利用力矩和杠杆原理,以及圆柱和圆锥的体积公式,推导出了球体积公式。

看得出来,除了微积分或无穷数学的思想,阿基米德研究数学的第二个武器是力学和物理学。我们再举两个例子,一个是重心。牛顿力学里,假设每个星球都是单个的点,这样的点叫重心。圆的重心便是圆心,正方形或平行四边形的重心是对角线的交点。而对于三角形,阿基米德证明了,重心就在任意一条中线距离边长的的三分之一处。这个结论是《论平面平衡》的命题1。再来看抛物线,这似乎是数学家发明的游戏工具。然而,现代科学却表明,围绕着原子核的电子、发射到太空的火箭、投石机弹出的石子,它们的运动轨迹均为圆锥曲线。

下面我们来讲述阿基米德羊皮书的历史。羊皮书是由羊皮纸(perchment)做成的,得名于它的诞生地,就是前面提到的帕加马王国(Pargamon)。当年那儿建立了大图书馆和大学,成为希腊散文和修辞的中心,并试图与亚历山大竞争文化学术中心地位。

托勒密王朝为了阻碍这一竞争,严禁向帕加马输出纸莎草纸,于是帕加马人在公元前2世纪发明了羊皮纸。羊皮纸由小羊皮或小牛皮制作,经石灰处理,剪去羊毛,再用浮石软化。这样的纸两面光滑,书写方便,尤其适合鹅毛笔,摺成书本也没问题。比纸莎草纸更适用,但价格昂贵。从公元前2世纪起,羊皮纸与纸莎草纸同时被使用。公元3到13世纪,欧洲各国普遍使用羊皮纸书写文件。14世纪起,逐渐被中国的纸取代。

公元330年,第一个基督教皇帝君士坦丁大帝在博斯布鲁斯海峡建造了一座城市,那便是东罗马帝国的首都君士坦丁堡。他下令抄写50本《圣经》,稍后批准了一项保护古典文献的计划,于是抄录员成了一份可靠的职业。3个世纪以后,圣索菲亚教堂落成,这座宏伟壮丽的建筑物被认为是图形和数字的呈现,是两位小亚细亚建筑师安提缪斯(Anthemius)和伊西多尔(Isidore)设计的。

此两人是阿基米德的崇拜者兼论著编辑,同时代的数学家欧多修斯(Eutocius)加以注释使之更为著名。可以想象,那时的君士坦丁堡拥有各种阿基米德著作。其中9世纪的一位牧首(教皇)佛提乌斯(Photius)通晓希腊古典文献,他收集编辑出版了自己读过的所有著作,冠名以丛书,并发明了书评。他还派遣学生西里尔兄弟去斯拉夫人中间传教,导致他们发明了西里尔字母,至今仍为俄罗斯、乌克兰、白俄罗斯和巴尔干半岛等十多个国家的语言使用。

君士坦丁堡牧首佛提乌斯是一位爱书人

9世纪中叶,抄写的方式从大写字母改为草书小写,这样一来速度加快,且每页文字内容增多。9世纪下半叶,叙利亚数学家、天文学家塔比特(Thabit ibn Qurra)在巴格达的智慧宫里,将阿基米德的著作从希腊文翻译成阿拉伯文。在12世纪时,又被意大利人吉拉尔德(Gerard)在托莱多译成拉丁文。那以后,君士坦丁堡在1204年经历了一场空前的灾难,东征的基督教十字军洗劫了这座欧洲最富有的城市。

阿基米德的著作只留下三个羊皮书抄本,分别称为A、B、C。三个抄本都包含《论平面平衡》,A和B都包含《抛物线求积》,A和C都包含《球体和圆柱体》、《圆的测量》和《论螺线》,B和C都包含《论浮体》;A是《锥形体和椭球体》、《沙粒的计数》的唯一抄本,C是《方法论》和《十四巧板》的唯一抄本。当然,还有著作不在任何抄本之列,有的已经遗失,有的如几何题集《引理集》,因有阿拉伯文版流传下来。

阿基米德羊皮书《十四巧板》封面插图

如今,A和B已经不复存在,只有它们的复本和译本留下来,但它们已经完成了自己的使命,把阿基米德的论著和思想传递到了近代。如此说来,海伯格当年发现的抄本C不仅是含有《方法论》和《十四巧板》(此书表明阿基米德已经掌握了组合学)以及希腊文《论浮体》的孤本,也是幸存下来的最古老的阿基米德论著的希腊文手稿。

这部羊皮书上阿基米德的著作抄于10世纪,后来被人擦掉,大约在13世纪时写上一大堆东正教的祈祷文和礼拜仪式,作为中世纪的宗教文献在一座修道院保存下来。旧的字迹隐约可见,海伯格惊喜地发现,那是阿基米德的著作。他的著作虽然不像《几何原本》那样浑然一体,但也所言有据、论证严密。

20世纪20年代,一位曾在希腊服役的法国人斯里克斯在游历土耳其时得到这本羊皮书,把它带回了巴黎。1947年,他搬到法国南方,把公寓连同羊皮书送给了女儿安妮。最晚在1970年,安妮知道这本书的价值,于是准备私下出售。但是,直到1998年10月29日,纽约克里斯蒂拍卖行的锤音落下,这部羊皮书才以两百万美元被一位不愿透露姓名的美国富翁买下,如今收藏在巴尔的摩华尔特艺术博物馆。

经过考古学团队(含科学史、数学史、艺术史、古籍手稿、化学、数码成像和X射线成像等方面专家)多年的合作研究,这部遗著终于与大家见面了。阿基米德在书中证明了,抛物线形(被一条与准线平行的直线所截的图像)与其内接三角形的面积之比为4比3(如图)。这一点再次证明了毕达哥拉斯学派揭示的整数比例关系无所不在,在《方法论》中,几乎每个命题都如此神奇。

06英雄挽歌

公元前212年,中国的皇帝秦始皇下令在咸阳焚书坑儒,460多名儒生惨遭杀害。那一年,叙拉古的阿基米德也走到了生命的尽头。

原来,出于商业、交通和殖民利益等的冲突,从公元前264年到前146年,迦太基与罗马帝国之间发生了三场战争,史称布匿战争,因为罗马人称迦太基人为腓尼(Peoni),转为布匿(Punic)。

其中尤以第二次布匿战争最为惨烈,那是在公元前218年到前201年间,犹如20世纪的第二次世界大战。迦太基人一度占据了上风,尤其在青年统帅汉尼拔的领导下,在海上完全取得了控制权,他率领的军队从陆地越过比利牛斯山和阿尔卑斯山,进入到亚平宁的腹地,最后因罗马人突袭迦太基本土,回军驰援而功亏一篑。

叙拉古的阿基米德广场

由于叙拉古与迦太基结成同盟,且叙拉古又在罗马船舰征战迦太基的途中,不可避免地成为罗马人攻占的目标。公元前214年,罗马名将马塞勒斯(Marcellus)率领大军围攻叙拉古。许多史书记载了这场战争,最早的是公元前2世纪的希腊政治家、历史学家波利比奥斯(Polybius)的《通史》。

书中写道,马塞勒斯从海上发起攻击,叙拉古人依靠阿基米德发明的起重机之类的器械将靠近岸边的船只抓起来,再狠狠地摔下去。马塞勒斯用八艘五层的橹船推进,每两艘连锁在一起,可是叙拉古人未等靠近,就用强大的机械把巨石抛出,形同暴雨,罗马兵死伤无数,只得后退。

还有一种传说见于2世纪希腊修辞学家、讽刺作家卢西恩(Lucian)的记载,说阿基米德用一面巨镜反射阳光来焚烧敌船。这或许是夸大的说法,不过至少可以说明,当时阿基米德已经发现抛物面反射镜能够聚焦的性质。后来,罗马人又采取夜袭的方法,谁知阿基米德早有防备,事先制造了一种叫“蝎子”的弩炮,专门对付近处的敌人,罗马兵又一次吃了大亏。最后,马塞勒斯干脆放弃正面围攻,而采用长期围困的策略。叙拉古终于因为粮食耗尽陷落,公元前212年,在一个庆祝的节日夜间被罗马人悄悄攻占,阿基米德也光荣牺牲。

关于阿基米德之死,最早的说法出自公元前后的历史学家、《罗马史》作者李维(Livy),“在兵荒马乱之中,侵略军大肆杀戮,阿基米德面对地上的一幅沙图思考,一个罗马士兵将他刺死,根本不知道他是谁。”策策斯教诲诗中是这样描写的,阿基米德没有注意到逼近他的人是谁,“喂!站远一点,别动我的图。”结果他被杀害了。而传记作家普鲁塔克的说法是,阿基米德要求让他先找到问题的答案,结果激怒了士兵。有意思的是,这则阿基米德的典故可能是唯一有关纯粹数学的。

据说,阿基米德被杀死后,马塞留斯非常悲痛,他严肃处理了那个士兵,还寻找到阿基米德的亲属,给予抚恤并表达敬意,又给阿基米德立碑,聊表敬仰之请。并让人在墓碑上刻上球内切于圆柱的图案,以资纪念。

值得一提的是,普鲁塔克是在《马塞勒斯传》写到这则故事的,他并没有为阿基米德立传,也许他认为,那位将军比阿基米德更重要。结果呢,将军本人因为这则有关阿基米德的记载才被人们记忆。一个多世纪以后,古罗马的政治家、作家西塞罗担任西西里的税务官,有意去墓地凭吊,结果无人愿意带路,他只好自己拨开荆刺寻找到了,只见那球和圆柱的图案仍历历在目。只是我不得而知,在墓碑上刻印图像或公式的传统,是否源于阿基米德。

英国哲学家怀特海曾经说过,“欧洲哲学传统最可靠的一般特征在于,它是由对柏拉图的一系列脚注组构成的。”有人借此比喻,“欧洲科学传统最可靠的一般特征在于,它是由对阿基米德的一系列脚注构成的。”

如今阿基米德已被公认为是古代世界最伟大的数学家、科学家。贝尔称:任何一张列举有史以来最伟大数学家的名单中,必定会包括阿基米德,另外两个通常是牛顿和高斯。不过,若拿他们的丰功伟绩与其所处的时代来比较,仍应首推阿基米德。甚至于菲尔兹奖章上刻着的也是阿基米德像,这与诺贝尔奖章刻着捐助人的像形成对照。

菲尔兹奖章,刻着阿基米德肖像

1979年,阿基米德的同胞诗人、克里特岛出生的埃利蒂斯获得了诺贝尔文学奖。在一首冠名《英雄挽歌》的长诗中他这样写道,“梦的轻烟是如何上升的……/ 这一顷刻将另一顷刻抛弃 / 永恒的太阳就这样离开了世界”。

 作者简介 蔡天新

浙江大学数学学院教授、博士生导师、求是特聘学者,近作有《小回忆》增订版、《我的大学》、《26城记》、《数学与艺术》、《经典数论的现代导引》(中、英文版)、《完美数与契波那契序列》(即出),主编《地铁之诗》、《高铁之诗》。

上帝的杰作系列之二:完美等式
【文摘】数学难题汇编(16)
【人物】费尔马最后定理
【游戏】百思不得其解的华容道布局
【文摘】数学家的想法
【文摘】数学趣题汇编(9)
【人物】侯世达:教计算机如何思考的人
【数学】有趣的自然数拆分
【人物】罗杰·彭罗斯
【文摘】数学趣题汇编(16)

发表在 数学, 杂篇 | 标签为 , , | 留下评论

【文摘】无穷大的密码

数学与通识

无穷大的存在问题是一个令人惊讶的古老问题。亚里士多德首先引入了一个明确的区分,以帮助理解它的意义。他区别两种不同的无穷大。其中之一,他称之为潜在无穷大:这种无限大刻画了无止境的宇宙或一个永无休止的名单,例如自然数1、2、3、4、5,等等,永远继续下去。这些是没有结束的列举或没有边界的疆场,你永远无法到达数的终点,或乘太空飞船达到无休止的宇宙终端。

亚里士多德很乐意这些潜在的无穷大,他认识到,它们的存在在他关于宇宙的思维方式中没有制造任何大麻烦。亚里士多德将所谓的实际无穷大与潜在无穷大相区分。这些将是你可以测量的局部的东西,例如固体的密度、光的亮度或一个物体的温度,在某个特定地方或时间变成无限。你将能在宇宙中局部地遇到这种无限。亚里士多德禁止实际无穷大:他认为它们是不可能存在的。这与他的本质上不可能有完美的真空的信念是一致的。如果可能的话,他相信人们能够推动一个物体并加快到无穷的速度,因为它不会遇到阻力。

几千年来,亚里士多德的哲学构成西方和基督教教义关于宇宙本质的基础。人们继续认为,实际的无穷不可能存在,如果存在的话,那么唯一实际无穷是神性。

数学的无穷

但在19世纪接近尾声时,数学家乔治·康托尔发展了一种更微妙的方式定义数学的无穷,它使数学世界开始发生变化。康托尔认识到,有一个最小类型的无穷大:永无休止的自然数列1、2、3、4、5…。他称这是一个可数无穷大。任何其他的无穷大,如果可以通过把其成员以一对一的方式对应到所有自然数,也被称为可数无穷大。这个想法有一些有趣的后果。例如,所有的偶数全体也是一个可数无穷大。直觉上,你可能会认为偶数只有自然数的一半多,因为对有限个数的列举这是对的。但是,当列举变得无止境后,这不再为真。

你可以给出一个从1到2、从2到4、从3到6等等直到最后的两个列举之间的一一对应。每个偶数将对应到自然数列中的一个唯一的相关数,所以这两个数集有同样多的数。伽利略首先发现了这个事实(尽管他数的是平方数1、4、9、16,等等,而不是偶数),因为感到太奇怪了,导致他不再进一步思考任何无限集合。他认为,这件事有一些危险的自相矛盾之处。然而,对于康托尔而言,能够在数集和其子集之间建立一个一一对应的关系,是一个无限集合的标志性特征。同样,所有有理数的全体,也就是所有的分数,是可数无穷大。系统列举这些数的方法是把分数的分子和分母加起来,然后先写下所有分子分母和为2的分数(只有一个,1/1),然后所有加起来为3的分数(1/2和2/1),依此类推。每次你只计数有限多个的分数(p+q=n的分数p/q个数是n-1)。这是计数所有有理数的一个可靠配方:你不会错过任何数。这表明,有理数是可数的,即使在直观感觉上,分数似乎比自然数多得多。

康托尔接着证明,还有其它类型的无穷大,并在某种意义上比可数无穷大要大得多,因为它们不能以可数无穷的方式来计数。这样一个无穷大的特征由所有实数的全体体现。像实数一样,这些都不可能被计数,没有系统地列出它们的方案。这种不可数无穷大也被称为连续统。但是找到这个无限大的实数集并不是故事的结束。康托尔证明,你仍然可以找到越来越无限大的集合,一路向上直到永远,没有最大可能的无限集合。如果有人给你一个无穷集合A,您可以构建一个更大的集合,不与A一一对应,该集合就是A的所有可能的子集全体。这永无止境的无穷之塔通向一个称为绝对无穷大的东西—无穷塔最末的那个遥不可及的顶峰。在数学上,康托尔把无穷处理为实际的东西,而不是潜在的。你可以将它们相加,比如一个可数无穷大加上另一个可数无穷大结果也是可数无穷大。

关于是否应该允许这样做在数学上可以大做文章。有些数学家认为,如果允许康托尔的超限量(它们被如此称作)进入数学,你可能在一些地方引进某种类型的细微矛盾。如果你将矛盾引入一个逻辑系统,那么最终你将能证明什么都是真的,那则会带来整个数学系统的崩溃。这种担心导致有限主义或构造主义数学的诞生,它只允许数学对象通过有限次的逻辑论证步骤来构造。这样的数学就变成了有点像电脑那样做事,可以设置某些公理,仅仅通过有限步的逻辑步骤推导出的东西才被认为是真的。这意味着你不能把反证法(或排中律)作为证明的公理,反证法先假如结果不成立,然后推导出矛盾,这样原命题的结果必定成立。这个构造主义观点的19世纪支持者是荷兰数学家L.E.J.布劳威尔和德国数学家L. 克罗内克,外尔在20世纪对此也感兴趣了一段时间。有一些数学家们由于哲学和其他原因以这种方式定义数学,还有一些只是感兴趣于在这个限制的情形下到底可以证明些什么。但一般而言,康托尔的想法已被接受,今天它们形成纯数学的一个分支。这导致一些哲学家,甚至一些神学家,重新考虑他们关于无穷的古老态度。因为有许多种类的无穷大,很清楚你不必把数学无穷的出现看成是对中世纪的神学家认为的神性的某种挑战。康托尔的想法实际上最先受到当代神学家的热情追捧,而不是数学家。科学家们也开始区分数学的无穷和物理的无穷。在数学上,如果你说某物“存在”,你的意思是,对于给定的一组特定规则,它并没有引入逻辑上的矛盾。不过,这并不意味着它可以坐在你的办公桌上,或在某个实处运行。独角兽不是逻辑上不可能的,但是,这并不意味着从生物的意义上它存在。当数学家证明了非欧几何存在时,他们只是发现了存在一个公理系统,允许他们不会走向自相矛盾。

物理的无穷

所以,现代物理学中的无穷大已成为与数学上的无穷大互相独立。物理中无穷大有常见的一个领域是空气动力学或流体力学。例如,空气动力学中的波可能会变得非常陡峭及非线性,然后形成激波。在描述激波形成的方程中,一些量可能会变得无限大。但是,当这一切发生的时候,人们可能会认为它只是一个失败的模型。原因可能是忽略了摩擦或粘度,一旦把它们包含在方程中,速度梯度就会变成有限,尽管它可能仍然是非常陡峭的,但在现实中粘度确实可以小到几乎为0。在大多数的科学领域,如果看到一个无穷大,人们通常会想当然地认为是由于模型不准确或不完整所致。粒子物理中一直有一个更长时间未决及更微妙的问题。量子电动力学在整个科学中是最好的理论,关于宇宙它比我们知道的其他东西都有更准确的预测。然而,这些预测的获得也伴随了一个尴尬的问题:当做数值计算来验证实验观察的时候,人们似乎总是得到一个添加了额外有限位的无穷答案。如果减去无穷大,留下来的有限部分就是人们希望在实验室中看到的预测,并总是极其精确地匹配实验。除去无穷大的这个过程被称为重整化。许多著名的物理学家们发现它极不令人满意。他们认为这可能只是一个理论的可以改善的症状。

同样的道理可以解释为什么弦理论在20世纪80年代创造了巨大的兴奋,导致大量的物理学家可以开始研究这一理论。这是粒子物理学家第一次发现了一个有限的理论,这些无穷大在该理论中没有出现。粒子物理的基本出发点是取代传统的观念:最基本的实体(例如光子或电子)应该是点状物体,通过空间和时间移动,所以在时空中被描绘。相反,弦理论认为最基本的实体是线或小圈,它们在移动时描绘出管道。当你有两个点状的粒子通过空间互动,就好像两条线相互打击,在相遇处形成一个尖角。图片中的尖角是所描绘的无穷之源。但是,如果你有两个小圈撞在了一起,这有点像一对裤子中的两条腿;然后又有来自另外两个小圈的相互作用,这像将另一对裤子缝到第一对上。你得到的是一个平稳过渡。这也是为什么弦理论如此吸引人的原因,它是粒子物理的第一个有限理论。

宇宙的无穷

另一种类型的无穷出现在引力理论和宇宙学。爱因斯坦的广义相对论表明,膨胀的宇宙(如我们所观察到的)在有限的过去开始之时,其密度是无限的,这就是我们所说的宇宙大爆炸。爱因斯坦的理论还预测,如果一个人掉进一个黑洞(在我们的银河系和附近有很多黑洞),他将在里面遇到一个无穷大的密度。这些无穷大,如果它们确实存在,将是实际无穷大。

人们对这些无穷大的态度是不同的。来自粒子物理并对弦理论关于宇宙起源有兴趣的宇宙学家会倾向于认为,这些无穷大都不是真正的,它们只是我们的理论不完善的附产品。还有其他人,彭罗斯(Roger Penrose)是其中之一,他们认为宇宙起源的无穷大在物理结构中起着非常重要的作用。但是,即使这些无穷大不是真正的无穷大,但密度仍然令人惊奇的高:比水的密度大10的96次方倍。在实际应用中,如此高的密度,以至于我们需要一个量子理论来描述空间、时间和引力特征的影响,了解在那里发生的事情。

如果认为我们的宇宙最终会停止膨胀并收缩到另一个无穷大,很奇怪的事情也许会发生,这就是一个大紧缩。大紧缩可能是不同步的,因为宇宙有星系,其密度比其他地方大。高密度区域在低密度地区前进入未来的无限大。如果我们处于宇宙中某个小地方,它大大推迟未来无穷大的到来,或甚至不会到来,那么我们可以回头看发生在其他地方的宇宙终止,这样我们就会看到一些无限。你也许会看到空间和时间即将在某个地方结束的证据。但是你很难精确预测当实际无穷大在某处出现时你将看到什么。在我们的宇宙于瞬间形成的过程中,有一个令人纳闷的防御机制。对这些的一个简单解释是:在每个黑洞的中心有无穷大的密度出现,恰似宇宙终端的无穷大。但是黑洞围绕这个现象产生一个景象:甚至光也不能在它附近逃逸。因此我们孤立了,看不到在那些其密度看上去好像要趋向无穷大的地方究竟发生了什么。反过来,无穷大也不能影响我们。这些景象使我们免于那些密度无穷大的地方产生的后果,它们也阻止我们看到发生的现象,除非我们位于黑洞之内。

另一个问题是我们的宇宙在空间上是有限还是无限。我认为我们永远不知道。它或许是有穷大的,但其尺寸任意大。但对许多人而言,有限大宇宙的想法立刻带来宇宙之外是什么的问题。没有“之外”—宇宙就是存在之万物之集。要理解这点,让我们想想二维宇宙,因为它们更容易想象。如果捡一张A4尺寸的纸,我们知道它有边缘,故有限的宇宙怎么会没有边缘呢?但关键之处是这张纸是平整的。如果我们想想二维的弯曲表面,像球的表面那样,则球面的面积是有限的:你仅仅需要有限量的颜料将它上色。但如果你在它上面走动,与在纸上走不一样,你永远到不了边缘。因此,弯曲的空间可以是有限的,但没有边界或边缘。要理解一个膨胀的二维宇宙,让我们首先想想一个无穷情形,其中平均而言无论走向何处,宇宙看上去都是一样的。那么无论你站在何处并向周围张望,看上去宇宙以你为中心向外膨胀,因为每一处都像是中心。对于有限的球面宇宙,把它想象成一只气球,并在表面上标上了星系。当你开始对气球充气时,星系开始彼此相向而退。无论你站在气球表面何处,你可看到当橡皮膨胀时,其他星系离你膨胀而去。膨胀中心不在曲面上,它处于另一维,在这个情形是第三维。因此我们的三维宇宙,假如它是有限的并正向弯曲,则其行为好像是一个想象的四维球体的三维表面。

爱因斯坦告诉我们,空间的几何由它当中的物质的密度确定。这颇有点像橡胶蹦床:如果你把物质放在蹦床上,这使得曲率改变。如果空间有大量的物质,它会导致一个巨大的角距降低,使得空间合拢。因此,一个高密度的宇宙需要一个球形的几何形状和一个有限的体积。但是,如果你有相对较少的物质变形空间,你则得到一个负曲率的空间,形状像一个马鞍或炸薯片。这样的负曲率空间可以继续被拉伸和膨胀下去。一个低密度宇宙,如果它有一个简单的几何形状,将有无限的尺寸和体积。但是,如果它有一个更奇特的拓扑结构,像一个圆环面这样的,也可以有一个有限的体积。关于爱因斯坦的方程的奥秘之一是,它们会告诉你如何从物质分布推导出几何形状,但他的方程关于宇宙的拓扑结构却没说什么。也许更深入的量子引力理论可以对此说些什么。

【数学】三进制的妙用
【数学】扑克中的捉乌龟游戏
【人物】欧拉,数学家中的神学家:对上帝的信心,陪我走过苦难的日子
【数学】四元数
【书籍】返璞归真–C.S.路易斯
【人物】华罗庚与中国计算数学
【数学】关于幂数小数分布的问题
【文摘】红楼梦时间表
【数学】猫捉老鼠趣题系列(四)
【人物】塞德里克•维拉尼

发表在 数学, 格物 | 标签为 , | 留下评论

【人物】天才数学家伽罗华

数学与通识

他是一个天才少年,15岁学习数学,短短5年就创造出对后世影响深远的“群论”,带来数学的革命。他也是一个悲情少年,两次升学未成,三次论文发表被拒,两次被捕入狱,20岁时就因与情敌对决而黯然离世。他就是法国数学家伽罗华,其惊人才华的背后却是充满坎坷的悲剧人生。2021年是伽罗华诞辰210周年,当我们再次追忆这段科学史上的传奇时,依然会为其成就赞叹,为其命运唏嘘。

令人惊叹的天才少年

伽罗华1811年出生于法国巴黎,1826年,15岁的伽罗华开始选修初级数学的课程,从而使他的数学天赋被彻底激发。伽罗华很快对数学教科书的内容感到无聊和厌倦,开始自学数学大师的巨著,如勒让德的《几何原理》、拉格朗日的《解析函数》等。伽罗华有着炉火纯青的心算本领,可以凭借纯粹的心算完成最困难复杂的数学研究。

1828年伽罗华在法国一个专业数学杂志上,发表了他的第一篇论文——《周期连分数一个定理的证明》。虽然此时的伽罗华还只是一个中学生,但已经能把大数学家的工作向着更完美的方向推进。也正是这一年,17岁的伽罗华第一次参加升入巴黎综合理工学院的竞赛考试,这所学校被誉为法国科学界的最高学府。但可能因为准备不足,伽罗华的考试失败了。这次考试的失败让那些惊叹于他数学天赋的伙伴们感到吃惊。许多人认为这次失败是一种不公正行为的结果,直至20多年后,这种争论仍未停息。

厄运不断的学术生涯

早在1828年,17岁的伽罗华就开始研究方程论,他创造了“置换群”的概念和方法,解决了几百年来使人头痛的高次方程求解问题。伽罗华最重要的成就,就是提出了“群”的概念,他用群论改变了整个数学的面貌。1829年5月,伽罗华将其研究的初步结果提交给法国科学院。负责审查这篇论文的是当时法国数学界的泰斗——柯西。当时柯西意识到这篇论文的重要性,也曾提及要在科学院的会议上介绍这篇文章,但在随后的科学院会议上柯西并未提及伽罗华的工作。为何柯西会忘记这么重要的事,成了一个无法解开的谜。后来,伽罗华论文的手稿也遗失了,此事便不了了之。

1829年7月,伽罗华的父亲在政治斗争中遭到迫害,自杀身亡。父亲的惨死对伽罗华打击很大。父亲去世后没过多久,18岁的伽罗华再次参加了巴黎综合理工学院的入学考试。在口试中,傲慢的主考与伽罗华辩论一道数学难题,主考自己错了却未意识到,而且对伽罗华自创的理论丝毫不能理解。在主考官眼中,伽罗华只是一个不切实际、好高骛远的学生,还轻蔑地嘲笑他。伽罗华感到相当愤怒,最后他居然把黑板擦扔到主考官头上。结果可想而知,伽罗华再次落选了。

1829年10月,伽罗华写了几篇大文章,并希望用自己的全部著作来应征法国科学院的数学特别奖。于是伽罗华整理好自己的论文,再次提交到法国科学院。此次主持审查论文的也是当时数学界权威人士,法国科学院院士——傅立叶!然而很不幸,傅立叶在3个月后病逝,也许根本没来得及仔细看这篇论文。后来人们在傅立叶的遗物中也没有再见到伽罗华的数学论文。就这样,伽罗华的论文第二次被丢失了。

伽罗华没有灰心,继续研究自己在数学领域的新成果,第三次写成论文,于1831年第三次向法国科学院提交。主持这次审查的是科学院院士泊松。这一次论文总算没有丢失,但论文中用了“置换群”这个崭新的数学概念和方法,以致像泊松那样赫赫有名的数学家一下子也未能领会。泊松认为伽罗华的论文晦涩难懂,希望他能更加详尽地重写。于是,伽罗华第三次提交给科学院的论文以一条“不可理解”的评语而被否定了。

1831年5月,伽罗华在一次宴会上拿出小刀挥舞,被人误认为“企图暗杀国王”,因此被送进了监狱。一个月后伽罗华在律师的帮助下,最终被法院裁决无罪释放。但被释放后仅一个多月,伽罗华因身穿炮兵部队制服带领群众在街上游行示威,再次被捕,这次他被判入狱6个月。

数学界未来之星的陨落

伽罗华第二次出狱后不久,便爱上了一个风骚的舞女。为了这个女人,伽罗华卷入了一场涉及“爱情与荣誉”的决斗。伽罗华知道他的情敌枪法很好,自己恐怕难逃一死,于是在决斗前夜,即1832年5月29日晚上,通宵达旦地把其平生所研究的数学成果写成了一个极其潦草的大纲,并在遗书手稿的旁边注释中写道“我没有时间了!”

1832年5月30日清晨,伽罗华在决斗中被情敌打穿了肠子,次日上午10点在医院去世。临终前,他拒绝接受神父的祈祷,他对弟弟阿尔佛雷德说:“不要哭,阿尔佛雷德!我需要足够的勇气在20岁时死去!”至此,数学史上最年轻、最富有创造性的数学家永远凋零,卒年20岁零8个月。

短暂生命的非凡贡献

伽罗华的论文手稿在他去世14年后,也就是1846年,才由法国数学家刘维尔领悟到其中所迸发出的天才思想,刘维尔花了几个月的时间研究并解释了它的意义,并将这些论文发表在极有影响的《纯粹与应用数学杂志》上,科学界传遍了伽罗华的名字。

历史上人类很早就掌握了求解一次方程和二次方程的方法。关于三次方程,我国古人在7世纪找到了一般近似解法,而西方到16世纪初由意大利数学家找到解法。三次方程被解出来后,一般的四次方程很快就被解出。这就很自然地促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是3个世纪过去了,前赴后继的数学家没有取得任何成果,著名数学家拉格朗日称这一问题是在“挑战人类智慧的极限”。

此后的19世纪,与伽罗华同一时代的阿贝尔终于给出了高于四次的一般代数方程不存在代数解的证明。伽罗华在阿贝尔研究的基础上,进一步发展了他的思想,把高次方程求解的问题完全转化为置换群及其子群结构的分析,彻底解决了困扰数学家们300多年的根式求解代数方程的问题,并通过研究这一问题提出了“群论”这一崭新的数学概念。作为伽罗华理论的推论,也能得出五次以上一般代数方程根式不可解,以及用尺规“三等分角”和“立方倍积”不可能等结论。而后面两个问题,是困扰了数学家们2000多年的“世界三大几何难题”(指为用没有刻度的直尺和圆规三等分角、化圆为方、立方倍积)中的两个。群论的出现标志着抽象代数的开创和兴起,这是代数的革命。

事实上伽罗华的群论不仅在数学领域渗透到几何学、代数拓扑学、函数论、泛函分析及其他许多数学分支中,而且在物理、化学以及计算机领域中都有重大的应用。直到20世纪90年代,安德鲁·维尔斯在证明费马大定理的过程中,依然用到了伽罗华理论。现在,群论在结晶学、理论物理、量子化学、编码学、计算机科学及算子理论等领域都发挥着极其重要的作用。

【数学】 哪些有理数角能用尺规作出
【科学】上帝掷骰子吗——量子物理史话(三)
【文摘】范畴论
【编程】Python基本字符串操作
【文摘】虚数不虚的秘密
【数学】有趣的自然数拆分
【数学】关于幂数小数分布的问题
【数学】趣味扑克牌魔术游戏
【数学】四元数
【软件】超级圆周率π运算器

发表在 数学, 杂篇 | 标签为 , , | 留下评论

【文摘】哪些是重要的数学才能

柯尔莫戈洛夫  好玩的数学

学习和研究数学所需要的特殊才能常常被人们过分地夸大。由于数学的非常形式化和课堂上很糟的教学,导致了数学特别难学的印象。如果有好的指导或者跟着一本好书,一个普通的中等才能的人足以毫不费劲地掌握中等学校的数学,而且更可以进一步学习,比如说,微积分初步。

但是,一旦涉及到专门选择数学作为职业时,很自然地就要用到自己的数学才能,或者有时称作数学天赋。事实上,在在数学中,理解数学推理,解答数学问题,乃至于更深一步去发掘新的结果时,不同的人当然有不同的速度,不同的难易程度和不同的成就。在这一部门中,那些能最有成效地工作的人正在力求成为千百万青年当中的数学专业人员。

所以,学校的数学小组,数学竞赛以及其他宣扬数学知识和发扬独立数学工作兴趣活动的主要目的之一就是协助青年,使得他们的数学天赋得以发挥。对于个别青年,不应当过早地赋予其数学天才之称号,但可以以谈话的方式及时启发,以竞赛奖励来推动,使他们这些有才能的数学人才去选择数学,作为将来他们的工作,这是必要的。

数学才能究竟是什么呢?

首先,需要明确,数学上的成就很少是因为机械记忆大量事实和个别公式而获得,等等。在数学上,如同所有事情一样,有很好的记忆力是很有用的,可是,大多数杰出的数学家并不见得具有特别突出的记忆力。用一个比较极端的例子来说明,如果有一个很偏才的人,记得住一系列很长的数字而且可以心算这种数字的加法或乘法,这种人并不会被看作是有好的数学才能。当然,此时的所谓数学才能是在严格意义下的数学才能。

有过代数学习经历的人知道,在代数计算中,例如,如果找到了较为复杂的文字式的巧妙变换,或者不用乘法而能找到更有效的方法去解方程等,都可以说接近了这种“才能”。对于从事严谨科学工作的数学家来说,这种才能是常常需要的。
通常也有一种情况,即就是上述那种计算才能的特别充分的发展,有时我们称之为“计算才能”,这是基本类型数学才能中的一种类型的特指。在中学代数中,进行代数式分解因式时,学生首先遇到的困难,就需要用这种才能来解决。在本文后附录中所列习题1 和2就属于这种情况!有时,一个很简单式子的因式分解则需要很多智慧。在解方程中,这种类型的才能更具其施展的园地。

然而,有时,在研究问题时,数学家会用几何直观方法。在中学教学中的实例,也可以充分说明几何直观方法的意义,例如,用图形去研究函数的性质非常有用。所以,在数学各分支以及在最抽象的问题研究工作中,几何直观起了很人的作用,这样说,不会使读者惊奇。

在中学里,通常很难给空间图形一个直觉的表示,应该用实例可以说明,按照通常中学的水准来衡量,这样的人才就是一个好数学家。即当他合上书之后,他不用画图就可以清晰地想象出,一个立方体表面跟经过它的中心而且垂直于它的一个对角线的平面的交线是什么样。

附录中习题4的所有解题难点就在于是否能直观了解切四面体所得到的交线是什么样的图形。几何直观在习题5-7的解决中也很重要。虽然,这类问题的解决还需要逻辑推理能力和理论的高深知识,并且后者对于证题来说是必备的。

数学才能的第三个重要方面是正确而又有条理的分段逻辑推理能力。在中学,首先,这种能力可以在具有定义定理和证明的系统化几何课程进行培养。然而,显然,对于中学生来说,从数学推理的逻辑结构来看,代数课程中的数学归纳法原理就是很难的学习内容。因为,对于很多学生而言,在这个命题本身的表述中,已经有很多的“每一个”“如果”“那么”等等的堆积。因此,正确了解和使用数学归纳法原理首先要有对逻辑的准确理解,还要有很好的判断力,这种对逻辑的成熟理解对数学家来说是很有必要的。

在不理解的情况下,很难得到有条理的逻辑推理能力。在进行中学数学竞赛解题中,就常常会出现这种意外的困难。在这里,并没有任何预先的中学数学课内知识基础的假定,但是,要求正确地理解题意和有条理的推理。

有一个滑稽问题,困扰了很多十年级学生。如果松林里有800000株树,并且其中每一株树上的松针不多于500000个,试证明,至少有两株树的松针数是相同的。

请与附录3 里习题8题进行比较。在习题10-12里,主要的困难不是所用的推理方法是否复杂,而是所要用的推理方法是不常见的。

数学才能的各方面都会在不同的组合里常常遇到,在这些不同方面里,如果单独一方面有突出的发展,那么就可以收到意外而非凡的结果。当然,这种单方面的发展终究是危险的。因此,用不着再用语言来说明,如果没有对自己事业的热爱,如果没有每天系统地勤恳工作,任何才能都是无效的。(姚芳译校)

附录 数学竞赛题选。

1.因式分解:x^5+x+1(列宁格勒,1951,8年级)。
2.因式分解:x^{10}+x^8+1(利沃夫,1946,9-10年级)。
3.求解联立方程xy(x+y)=30,x^3+y^3=35(列宁格勒,1951,9年级)。
4. 一正方体里有两个正四面体,第一个正四面体的顶点是正方体的四个顶点,第二个四面体的顶点是正方体其余的四个顶点。试求这两个四面体公共部分的体积与正方体体积之比,(伊凡诺夫,1951,9-10年级)。
5.在一球外外切一个空间四边形,求证:切点都在同一平面上。(莫斯科,1950,9-10年级)。
6.求证从正四面体里的任意一点到它的面上的距离之和是一常数。(斯大林格勒,1950.10年级)。
7.求证正面体的高的中点与到底的各个顶点之连线相互垂直。(喀山,1947,9-10年级》。
8.有五百只装着苹果的箱子,已知每个箱子最多可以装240个苹果。求证至少有三只箱子装了同样多的苹果。(基辅,1950,7-8年级)。
9.50!=1*2*3*...*50数内包含多少个0?(利沃夫,1950,7-8年级)。
10. 在24小时里,表的时针与分针有多少次相互垂直?(基辅,1949,7-8年级)。
11.n凸多边形最多有几个锐角?(基辅,1949,9-10年级)。
12.求证:13边凸多边形不能分割诸多平行四边形。(莫斯科,1947,7-8年级)。(姚芳译)

注释[1] 本文译自:柯尔莫戈洛夫. 论数学职业. 8-11页. (А.Колмогоров О профессии математика. 8-11.[2]此处谈到的是分解成为有理系数的多项式,开始时很多人会觉得在习题1和2里的这类的分解是不可能的。[3]在《论数学才能》中多处提到此附录中的习题,为了帮助理解,此处附上此附录。附录中有25道题,但《论数学才能》中涉及到的习题属于12(包括12)以前的题,因此,只列出前12道题。

选自《数学——科学和职业》,[俄]柯尔莫戈洛夫著,姚芳、刘岩瑜、吴帆编译,大连理工大学出版社

【科学】杨-米尔斯理论
【数学】科学大师的故事:数学奇才帕斯卡
【文摘】数学难题汇编(5)
【数学】奇妙的磨光变换
【文摘】数学奇才帕斯卡:我的上帝永远没有离开我
【数学】无穷的奥秘
【文摘】大学数学竞赛题汇编(10)
【文摘】大学生数学竞赛题汇编(5)
【数学】猫捉老鼠趣题系列(四)
【数学】彭罗斯镶嵌

发表在 数学 | 标签为 | 留下评论

【数学】泰勒级数的思想

数学与通识

高等数学干吗要研究级数问题?
是为了把简单的问题弄复杂来表明自己的高深? No,是为了把各种简单的问题/复杂的问题,他们的求解过程用一种通用的方法来表示。

提一个问题,99*99 等于多少? 相信我们不会傻到列式子去算,口算也太难了而是会做一个迂回的方法,99*(100-1),这样更好算。

那么 995*998 呢? 问题更复杂了,(1000-5)*(1000-2),式子比直接计算要复杂,但是口算却成为了可能。归纳一下,x*y 这样的乘法运算或者幂次运算,如何直接计算很麻烦的话,我们可以用因式分解的方法(中学生都能理解)来求解。但是因式分解仍然不够通用,因为我们总是需要通过观察”特定”的待求解式子,找到一种规律,然后才能因式分解,这是我们从小学到中学数学方法的全部: 特定问题特定的解答方法。那么,到了高等数学,怎么办? 研究一种方之四海皆准的,通用的方法。

泰勒级数的物理意义是什么? 就是把方程 g(x)=0 的解,写成曲线方程的形式看看和 x 轴有什么交点。例如 f(x)=x^2=5 等价于 g(x)=x^2-5=0和 x 轴的交点。而这个曲线交点可以用直线切线的逼近方法(牛顿迭代法)来实现,这就是泰勒级数的物理意义: 点+一次切线+2 次切线+…+N 次切线。每次切线公式的常数,就是泰勒级数第 N 项的常数。OK,从泰勒级数的式子可以看到,为了保证两边相等,且取 N 次导数以后仍然相等,常数系数需要除以 n!,因为 x^n 取导数会产生 n!的系数。泰勒级数,就是切线逼近法的非跌代的,展开式。泰勒公式怎么来的,其实根据牛顿逼近法就可以得到从 1 阶一直可以推导到 N 阶。

假设f_1(x)=f(x)-f(a) ,由牛顿逼近法有

f_1(x)=f'(a)(x-a)+o(x-a)^2

所以f(x)=f(a)+f'(a)(x-a)+o(x-a)^2

同理,假设f_2(x)=f(x)-f(a)-f'(x)(x-a)

两边求导,f_2'(x)=f'(x)-f'(x)-f''(x)(x-a)=-f''(a)(x-a)

再求不定积分f_2(x)=-(1/2)f''(a)(x-a)^2+C,C 就是那个高阶无穷小(需要证明)

所以f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2+o(x-a)^3

依次类推,最后就有了泰勒公式。

另一种证明过程干脆就是先写出来

g(x)=a_0+a_1(x-a)+a_2(x-a)^2+...+a_n(x-a)^n

然后从等式序列,g(a)=f(a),g'(a)=f'(a),...g'''''(a)=f'''''(a)......就得到所有的 a_0-a_n 的泰勒展示系数了。

泰勒级数展开函数,能做什么?对于特定的 x 取值,可以求它附近的函数。y=x^100 展开以后可以求 x=1 附近的 0.9999 的 100 次方等于多少,计算过程和结果不但更直观,而且可以通过舍弃一些高阶项的方法来避免不必要的精度计算,简化了计算,节省了计算时间(如果是计算机计算复杂数字的话)。

在图像处理的计算机软件中,经常要用到开方和幂次计算,而 Quake III 的源代码中就对于此类的计算做了优化,采用泰勒技术展开和保留基本项的办法,比纯粹的此类运算快了 4 倍以上。

还可以做什么呢? 对于曲线交点的问题,用方程求解的办法有时候找不到答案,方程太复杂解不出来,那么用泰勒级数的办法求这个交点,那么交点的精度要提高,相当于泰勒级数的保留项要增加,而这个过程对应于牛顿–莱布尼茨的迭代过程,曲线交点的解在精度要求确定的情况下,有了被求出的可能。

看到了吧,泰勒技术用来求解高方程问题,是一种通用的方法,而不是像中学时代那样一种问题一种解决办法,高等数学之所以成为”高等”,就是它足够抽象,抽象到外延无穷大。那么,更感兴趣的一个问题是,对于高阶的微分方程表达的问题,怎么求解呢? 泰勒级数不行了,就要到傅立叶级数-傅立叶变换-拉普拉斯变化。这几个工具广泛用于各个领域的数学分析,从信号与系统到数理方程的求解。

中学数学和高等数学最大的区别是什么?

中学数学研究的是定解问题,例如根号 4 等于 2。高等数学研究什么呢—-它包含了不定解问题的求解,例如用一个有限小数位的实数来表示根号 5 的值。我们用泰勒级数展开求出的根号 5 的近似值,无论保留多少位小数,它都严格不等于根号 5,但是实际应用已经足够了。不可解的问题,用高等数学的通解办法,可以求出一个有理数的近似解,它可以无限接近于上帝给出的那个无理数的定解。通解可行性的前提是,我们要证明这种接近的收敛性,所以我们会看到高等数学上册的课本里面,不厌其烦的,一章接一章,一遍又一遍的讲,一个函数,在某个开区间上,满足某个条件,就能被证明收敛于某种求和式子。初等数学求的是定解,那么如果没有定解呢? 高等数学可以求近似解。牛顿莱布尼茨就是切线逼近法的始祖。例如求解一般的 3 次方程的根,求解公式可以是定解形式,但是问题是根号内的无理数仍然无法表示出来。

那么逼近法求一个数的N次方根就派上用场了。

f(m)=m(k+1)=m(k)+[\frac{A}{m^2}(k)-m(k)]\frac1n,n是方次,A 被开方数。

例如,A=5,5 介于 1 的 3 次方至 2 的 3 次方之间。我们可以随意代入一个数 m,例如 2,那么:

第一步,2+[\frac5{2^2}-2]*\frac13=1.7;

第二步,1.7+[\frac5{1.7^2}-1.7]*\frac13=1.71;

第三步,1.71+[\frac5{1.71^2}-1.71]*\frac13=1.709;

每次多取一位数。公式会自动反馈到正确的数值。

具体的求解过程:先说说泰勒级数:一个方程,f(x)=0,求解 x,它唯一对应 x-f(x)二维图像上的一条曲线。那么 x 的求解过程可以用牛顿-莱布尼茨逼近法求得(迭代)。例如x^2=5 可以看成f(x)=x^2-5=0 的求曲线和 X 轴的交点。牛顿迭代法可以用来求解线性方程的近似解。那么如何求解非线性方程呢? f(x)用泰勒级数展开,取前 N 项(通常 N=2),得到一个线性的方程,这个方程相当于是原来的曲线在求解点附近做了一条切线,其求解过程和牛顿迭代法等价。迭代次数越多,越接近非线性。用泰勒级数来分解 sin(t),把一个光滑的函数变成一些列有楞有角的波形的叠加。用傅立叶级数来分解方波,把有楞有角的波形变成一些光滑曲线的集合。但是傅立叶级数舍弃项的时候,会产生高频的吉布斯毛刺(上升下降的边沿,迪利赫里条件不符合)。局部的收敛性不如泰勒级数展开—-因为泰勒级数展开有逐项衰减的常数因子。

举个例子,用泰勒级数求解欧拉公式。没有欧拉公式,就没有傅立叶变换,就没有拉普拉斯变化,就不能把高阶导数映射到 e 的倒数上面,也就无法把微分方程等价为一个限行方程。欧拉公式有什么用? 它把实数的三角运算变成了复数的旋转运算,把指数运算变成了乘积运算,把纯微分方程的求解过程变成了指数方程的求解过程,大大简化了运算。推广一下。怎么分析一个函数?怎么分析一个几何的相交问题?怎么解决一个多维的问题? 初等的方法是根据函数或者图形的几何性质,去凑答案—-当然大部分情况是凑不到答案的,因为能凑到答案是因为问题/题目给出了一些特殊的数学关系以使得我们恰好能凑到答案! 例如一个圆球在正方体里面,求通过某个顶点的切面方程或者距离什么的,我们可以通过做辅助面求得。

但是这个求解太特殊了,对于普通的点,

例如切面方程13x+615y+72z-2=0

这样的,初等方法就无能为力了。说白了初等方法就是牛顿在《自然哲学的数学原理》提到的几何方法,牛顿并没有把微积分上升到解析的思想。普通数学分析则提出了解析的代数运算思想,把具体的问题用通用的方式来求得,而问题的题设只是一种把函数的实际参数带入形式参数的过程,使得问题可以形式化了—-如果数学问题不能形式化就不能通过状态机来求解,试想,计算机怎么会画辅助线呢? 几何图形是有意义的,但是形式求解本身没有意义,它必须把实际的”意义”问题变成代数运算,例如求最大值最小值变成导数=0。

电路分析当中的模型是什么? 就是数学建模。

因为电压和电流是可以测量的量,那么我们就要看什么量是不变量/变量,什么量是自变量/因变量。如果电压是不变量,我们认为是理想电压源;如果电流是不变量就是理想电流源,如果电压电流的比例不变就是恒定电阻;如果电压电流乘积不变就是理想功率源。把控制电路作为一个整体,那么电压/电流控制电压/电流,作为一个黑盒,对外的特性就是电压转移系数,电流转移系数,转移电阻和转移电抗。在物理学的电场分析当中电压/电势是一个矢量,但是到了集总电路分析的领域就退化成了一个标量。对于复杂问题的分析,好比物理学当中的动量/能量守恒,电路分析是以电流守恒为基础的,于是就有了节电电流法和环路电压法的概念。这些概念的建立都是为了分析的目的而存在的,是分析工具。我们首先得到一个工具,当直接分析很困难的时候,我们采用逼近的方法来解决—-因为极限就是我们所求的。正是因为解析的思想是一种通用的求解方式,爱因斯坦在晚年才会追求 4 大场的统一理论,当然他忽略了这个”解析”的形式系统本身在量子的尺度上失效了,忽略了不确定性和概率的影响,令人惋惜。说的太远了,高数里面为什么有那么多种正交展开? 泰勒级数,傅立叶级数,罗朗级数—-其实就是因为初等的方法无法精确分析出定解,那么就去寻找一种”不断逼近”的方法来求解。复变函数研究的就是如何用幂级数不断的逼近原函数这个基本命题。

泰勒是怎么想出来的?

为什么泰勒级数,傅立叶级数,这些展开式都可以写成某个通项公式的和呢? 是不是真理都是简单的美的,就像毕达哥拉斯所设想的一样? 这个观点也许搞反了因果的方向。我们看一下泰勒级数是怎么得到的。

泰勒假设f(x)=f(a)+f'(x)(x-a)+o(x-a)^2

这个是牛顿莱布尼茨公式可以推出来的,那么有了一次项以后,如何继续逼近? 方法类似,一次的求解是g_1(x)=f(x)-f(a)=f'(x)(x-a),那么可以写出g_2(x)=f(x)-f(a)-f'(x)(x-a)两边对 x 求导再求不定积分,就得到了 2 阶的泰勒级数。依次类推,可以得到 N 阶的泰勒级数。由于每一阶的推导过程是”相似”的,所以泰勒项数的子项肯定也就具有了某种形式意义上的相似性。说白了,不是因为客观存在某种规律使得函数可以展开成具有通项公式的幂级数,而是为了把函数展开成具有通项公式的幂级数再去看每个子项应该等于什么,然后为了保证严格再给出收敛以及一致收敛的条件。

不是客观存在某种”简单而且美”的真理,而是主体把某种”简单而且美”的形式强加给客观,再看客观在”强加”语境下的特性如何。傅立叶级数的思想,频率分析的思想,和这个相似,是把我们心中的某个概念赋予外界的实在,按主管意识的想法来拆借外界—-只有这样,思想才能被理解。当然,实数范围的泰勒级数和傅立叶级数展开的条件仍然比较严格,复变函数引入了对应的洛朗级数和傅立叶/拉普拉斯变换,通用性强多了。说白了,复变函数就是函数逼近论。为了解决初等思想没法解决的不可能想明白的问题而引入的高等方法。

逼近思想的一个应用就是理解曲率的公式

A=\frac{|y''|}{\sqrt{1+y'^2}}

画出逼近图形就可以理解了,用两个相似三角形就可以证明这个公式。

复变函数说白了就是 2 维正交元素组成的数域。

(1+i)^i=e^{iLn(1+i)}=e^{i[Ln|1+i|+i(arg(1+i)+2k\pi)]}

=e^{-\pi(\frac14+2k)(cos[\frac{ln2}2])+i*sin[\frac{ln2}2]}

是一个正交的表达式,它保留了两个方向上的分量,使得 2 维分析变得可能。这样一来,高等数学当中的曲线积分,积分的变量不再是 x 和 y 而是只剩下了 z,形式上简单多了。

假设曲线积分 S1=S(Pdx+Qdy)其中Q=x^2-2xy-y^2,P=x^2-y^2+2xy,显然满足格林公式。

然后负数积分 S(z^2)dz=S(x^2+2xyi-y^2)d(x+yi)=S( (x^2-2xy)dx+(y^2-2xy)dy )

S(x^2+2xyi-y^2)d(x+yi)实部=S(x^2-y^2)dx-2xy^2dy,虚部=S(2xydx+(x^2- y^2)dy),实部和虚部相加就是 S1,也就是说,S 是 S1(曲线积分和路径无关)的复数形式。

我们可以验证 S(z^2)dz沿不同积分路线从起点到终点的积分结果。

z^2=(x^2-y^2)+i2xy,显然满足柯西-黎曼条件。于是它和实数积分的格林公式统一了。

实际的模型总是难以精确的解释的,所以我们创造一些理想模型去逼近现实。当然,两者不会相等,但是只要误差在容许的范围之内,我们认为数学的分析就成功了。这就是一切数学建模的思想。工科电子类的专业课,第一门数学建模的课程就是电路分析。这里传输线的问题被一个等效电路替代了。实际电源被一个理想的电压源加上一个电阻替代了,三级管放大电路的理论模型就是电流控制的电流源。一切都是为了分析的方便。只要结果足够近似,我们就认为自己的理论是有效的。出了这个边界,理论就需要修正。理论反映的不是客观实在,而是我们”如何去认识”的水平,理论是一种主观的存在,当实际情况可以影射到同一种理论的时候,我们说理论上有了一种主观的”普遍联系”,就像电路分析和网络流量的拓扑分析有很多共同点。这种普遍联系不是客体的属性,只和主体的观点有关。

说点题外话,对于工科电子类/计算机类的学生来说,我们学习了太多了经过精简压缩贯通的课程,以至于不知道了这些理论原有的面貌。有一种趋势就是把重要的思想性的原理性的东西去掉只留下工程实用性的内容下来。于是工科学生学到的都是”阉割”过的科学与技术—-缺少灵魂的学问是无法用来做研究的。

没有强大的数学基础,所谓的”科研”,只能是某种一边发明数学一边凑答案的抓狂,只能是空谈。还是老老实实的做项目,搞软硬件研发,开发市场,做技术支持,写报告,等等。

【数学】角谷(3n+1)问题的推广
【文摘】数学难题汇编(9)
【文摘】趣味逻辑学问题(5)
【文摘】趣味逻辑学问题(10)
【数学】经典悖论漫游(一)
【科普】进化从来没有发生过
【文摘】数学趣题汇编(9)
【人物】数学家高斯
【数学经典】素数之恋-伯恩哈德·黎曼
【数学】选举中的数学智慧

发表在 数学 | 标签为 , | 留下评论

【数学】柯尔莫哥洛夫

 Slava Gerovitch 返朴

踏入数学世界

如果两个统计学家在森林里迷了路,那他们首先要做的事情就是把自己灌醉,这样两个到处乱晃的醉汉或许能彼此相遇。但如果他们是要想背起竹筐采蘑菇,那还是少喝两杯为好,毕竟毫无目的的随机走动会让他们回到已经采摘过的地点。

这件事情在统计学中,被称之为随机游走(random walk)或者说是醉汉漫步(drunkard’s walk),这一模型表示,系统的未来状态仅取决于当前的状态,而与过去无关。时至今日,这一模型已经广泛地应用于股价建模、分子扩散、神经活动和种群动力学等过程,也可以用来解释遗传学中的“基因漂变”是如何导致某一基因(比如眼睛颜色)在人群中普遍存在的。

颇具讽刺意味的是,该理论模型不在乎过去、不在乎历史,但它本身却可谓是历史悠久。它是苏联数学家安德烈·柯尔莫哥洛夫(Andrei Kolmogorov,1903-1987)众多理论成就之一。这位奇才异能的数学家涉猎极广,他在平衡政治生活与学术生活的同时,也改变了“不可能”在数学中的地位。

柯尔莫哥洛夫(Андре́й Никола́евич Колмого́ров,1903.4.25-1987.10.20)丨图源:yarwiki.ru

后俄国革命时代的莫斯科文化思想活跃,当时氛围中充满着实验性文学、前卫的艺术与激进的新科学思想。年轻的柯尔莫哥洛夫也受此影响。在 20 世纪 20 年代初,柯尔莫哥洛夫还只是一名历史系的学生,那时他在莫斯科大学提交了一篇论文,对中世纪俄罗斯人的生活进行了非常规的统计分析。他发现,政府对村庄的课税往往是整数,而分到每家户人家时就成为了分数。因此,他认为在当时税收政策是按村缴纳再摊派到户,并不是按户纳税再由村庄收齐上缴。“孤证不立”,历史教授对他的发现给出了极为严厉的批评,“一个证据是不够的,你至少要找到五个例证。”

这也就不奇怪为何柯尔莫哥洛夫会投身数学——数学定理只证明一次就够了

学术理论背后的政治现实

柯尔莫哥洛夫转向概率论领域也同样源于一次偶然。当时,概率论这一数学分支的声誉并不太好,因为过去的人们总是把概率视为神灵意志的体现。在古埃及和古典希腊,人们就认为掷骰子是一种可靠的占卜和算命的方法。到了19世纪初期,欧洲数学家已掌握了一些正确计算概率的方法,并将概率定义为目标事件数与所有等可能事件数的比值。但其缺陷在于,概率是根据等可能的事件来定义的,因此只适用于元素有限的系统。面对无穷大的系统时,比如有无数个面的骰子,或者一个连续的球面,当时的概率论就显得捉襟见肘了。

然而,柯尔莫哥洛夫是珍惜声誉与名望的。换专业后,柯尔莫哥洛夫最先被莫斯科大学里的一个数学圈子所吸引。他们的领导者是一位魅力非凡的老师,尼古拉·卢津(Nikolai Luzin,1883-1950)。卢津的弟子们给这个组织起了个绰号叫卢津塔尼亚(Luzitania)——把卢津的名字和一战中被击沉的著名英国远洋邮轮卢西塔尼亚号(RMS Lusitania)连在了一起。如柯尔莫哥洛夫所说,他们是通过“共同的心跳”凝聚在一起。他们常在课后一起批判数学创新。在他们的口中,偏微分方程(partial differential equations)成了“偏不尊重方程”(partial irreverential equations),有限差分(finite differences)成了“美梦差分”(fine night differences)。那时,概率论因其理论根基不牢又悖论丛生,在他们口中就变成了“不幸论”(theory of misfortune)。

尼古拉·卢津 (Николай Николаевич Лузин,1883.12.9-1950.1.28),描述集合论的创始人之一,在三角级数、复分析、微分方程和数值计算等领域有杰出贡献。丨图源:ru.wikipedia.org

受卢津塔尼亚的影响,柯尔莫哥洛夫对概率论的态度也发生了转变。20 世纪 30 年代斯大林主义的恐怖活动爆发,秘密警察会在半夜敲响每个人的房门,毫无规律的随机性似乎统治了人们的生活。在恐惧的威慑下,很多人为了自保而告发他人。数学圈中的布尔什维克党活动人士里就有卢津的学生。他们以卢津在国外发表自己的研究论文为由,指控其政治上不忠诚并对其进行批判。柯尔莫哥洛夫也在国外发表过文章,出于对自己学术生涯的担心,他对政治问题表现出了明显的妥协。当莫斯科大学数学研究所所长因支持宗教而被监禁时,他接任了这一职位。此时,柯尔莫哥洛夫也加入了批判卢津的人群。卢津收到了来自苏联科学院的审判,失去了所有的职务,但他却逃脱了来自政府当局的逮捕和枪决。

与卢西塔尼亚号一样,卢津塔尼亚也被击沉了。不一样的是,卢津塔尼亚是被自己的船员击沉的。

“不可能”的大圆

且不谈柯尔莫哥洛夫的道德问题,他确实“赢了”,保住了自己的研究工作。而与他在政治上的顺从所不同的是,柯尔莫哥洛夫的研究思想却是比较激进的,他将概率论做了根本性的修正。他所使用的是一种由法国传入的名为测度论(Measure theory)的东西,当时算得上是时髦理论。测度论将长度、面积、体积等概念泛化,使得无法被常规方法测量的数学对象可能被测量。例如,一个有无限多个孔的正方形,被切割成了无穷多份并散落在了无限的平面中,借助测度论我们仍然可以表示出这个七零八碎的物体的“面积”(测度)。

柯尔莫哥洛夫在概率和测量之间进行了类比,得出了五个公理,现在通常表述为六个,他的工作使概率论真正成为数学分析中的一部分。他的理论中最基本概念是“基本事件(fundamental event)”,即单一实验的结果,例如掷硬币。所有基本事件构成了一个 “样本空间(sample space)”,即所有可能结果的集合。举个例子,假如某个区域常会出现闪电,样本空间就包括该区域所有可能发生闪电的位置 。一个随机事件被定义为样本空间中的一个“可测集(measurable set)”,而随机事件的概率则是可测集的“测度(measure)”。例如,闪电击中某位置的概率只取决于这个位置的面积(“测度”)。两个同时发生的事件可以用它们的测度的交集来表示;条件概率可以看成测度的相除;两个互不相容的事件其一发生的概率则用测度的加法来表示(也就是说,A或B被闪电击中的概率等于它们面积之和)。

大圆悖论(The Paradox of the Great Circle)就是通过柯尔莫哥洛夫的概率论得以解决的。大圆悖论是说,假设有外星人会随机降落到一个完美的球形星球上,且降落到每个点的概率也都是平均的,这是否意味着所有球体的大圆(great circle,即过球心的平面和球面的交线,把球体分成了两个相等的半球)上的降落概率都是一样的呢?其结果是,对于赤道所在的大圆而言,圆上每个点的概率是均等的。而对于经线来说,靠近赤道的点概率大,靠近两极的点概率小。这一发现或许可以用越靠近赤道纬度圈越大来解释。但是,这种结果与我们的直觉相违背,因为对于一个完美的球体而言,通过旋转,赤道可以变成任意一条经线。柯尔莫哥洛夫认为,大圆是一条线段,面积是零,因此测度为零。这一悖论的矛盾之处就在于我们无法严格计算相关的概率。

“大圆”,定义并不严格丨图源:en.wikipedia.org
大圈悖论在概率论中称为Borel-Kolmogorov 悖论,随机变量在以经线和纬线两种条件下的分布下得到了不同结果,实际上是测度为0的条件概率问题。丨图源:Yarin Gal

在零测度的条件概率世界中短暂的逃避了“大清洗”后,柯尔莫哥洛夫仍然要为现实世界的问题所困扰。二战时期,苏联当局要求柯尔莫哥洛夫研究提高炮火效率的方法。柯尔莫哥洛夫发现,在某些情形下,与其提高每一颗炮弹的命中率,还不如对小幅度偏离目标的范围进行连续猛击。这一策略被称之为是“人工散布(artificial dispersion)”。在柯尔莫哥洛夫主持下的莫斯科大学概率系也计算了低空、低速轰炸的弹道表。为表彰柯尔莫哥洛夫在二战时期的贡献,苏联政府于1944年和1945年授予了他两枚列宁勋章。二战后,他担任了热核武器计划的数学顾问。

洞察艺术世界的概率视角

出于专业兴趣,柯尔莫哥洛夫实际上对哲学更加有所偏爱。数学出身的他相信,这个由随机决定的世界却有序运行,其背后也有概率论的规律可循。他常常思考那些“不可能”的事情在人类生活中的影响。

1929年,在一次独木舟旅行中,柯尔莫哥洛夫与数学家帕维尔·亚历山德罗夫(Pavel Alexandrov,1896-1982)相遇,从此二人也成为了终生的好友。在一封长信中,亚历山德罗夫坦率地指责柯尔莫哥洛夫喜欢在火车上与人攀谈,并暗示这种交际太肤浅,并不能真实地了解一个人。而柯尔莫哥洛夫表示了反对,他以一种激进的概率论视角来看待社会交际。在这样的交际互动中,交际的对象是更大群体的统计样本。“人会从环境中领悟真谛,并将养成的生活方式与世界观带给周围任何的人,不只是特定的朋友。”柯尔莫哥洛夫在回信中说。

对柯尔莫哥洛夫来说,音乐和文学也非常重要,他相信自己可以从概率的视角去洞察人类心灵的运作方式。他也是一个文化精英主义者,认为艺术的价值是分三六九等的。最顶尖的就是歌德、普希金和托马斯·曼的著作,还有巴赫、维瓦尔第、莫扎特和贝多芬的音乐作品——这些作品的永恒的价值类似于永恒的数学真理。柯尔莫哥洛夫强调,每一件真正的艺术作品都是独一无二的,是所谓“不可能”的事物,是超脱统计规律以外的事物。他在1965年的一篇文章中讽刺地问道,“有没有可能把‘托尔斯泰的《战争与和平》’以一种合理的方式纳入‘所有可能的小说’集合中,并进一步假定这一集合中存在某种特定的概率分布?”

同时,柯尔莫哥洛夫也渴望能找到解密艺术创作本质的钥匙。1960年,柯尔莫哥洛夫为一组研究人员配备了机电计算器,指派他们计算俄罗斯诗歌的节奏结构。柯尔莫哥洛夫对实际韵律与古典韵律的偏差特别感兴趣。在传统诗学中,抑扬格是由一个非重读音节跟着一个重读音节组成的。但在实际的创作中,这条规则却很少被遵守。普希金的《叶甫盖尼·奥涅金》是俄语中最著名的古典抑扬格诗,全诗的5300行中,几乎有四分之三的诗句违反了抑扬格定义,超过五分之一的音节都非重读音节。柯尔莫哥罗夫认为,重音偏离古典韵律定义的频率为诗人提供了一个客观的“统计画像”。在他看来,一种不太可能出现的重音模式恰好反映了艺术的创造性和表现力。通过对普希金、帕斯捷尔纳克和其他俄国诗人作品的研究,柯尔莫哥洛夫认为,诗人对韵律格式的独特运用,奠定了自己作品的“调性”。

为了衡量文本的艺术价值,柯尔莫哥洛夫还采用了字母猜测法来估算自然语言的熵(entropy)。在信息论中,熵是对不确定性或不可预测性的度量。对于信息而言,一份信息的不可预测性越大,它所携带的信息量就越多。在柯尔莫哥洛夫眼中,熵成为了一种评价艺术独创性的指标。他的研究小组进行了一系列实验:给志愿者们展示一段俄罗斯散文或诗歌,并让他们猜下一个字母,再猜一个,以此类推。柯尔莫哥洛夫私下说过,从信息论的观点来看,苏联报纸的信息量不如诗歌。因为政治话语会使用大量的固定短语,内容更容易预测。而对于诗歌来说,尽管存在严格的格律要求,但那些伟大诗人的作品却难以预测。他认为这就是诗人的独特标志,也是艺术上的不可能,但概率论有助于衡量艺术的价值。

虽然将《战争与和平》这样的小说置于一个概率样本空间的想法遭到了柯尔莫哥洛夫的蔑视,他却可以通过计算《战争与和平》的复杂性来表达其不可预测性。柯尔莫哥洛夫假设,复杂性是一个对象的最短描述长度,或者是生成一个对象的算法的长度。确定性的对象的描述是简单的。比如,它可以通过一个周期性的0和1组成的序列产生。但不确定的、真正随机的对象则是复杂的,任何生成算法的长度都必须和对象本身一样长。比如,无理数,小数点以后的数字没有规律可循(循环小数可用一个简洁的分数来表示)。因此,大多数无理数都属于复杂对象,因为要描述它们就只能原样再写一遍。这种对复杂性的理解是符合直觉的,即没有任何办法去预测、描述一个随机对象。今日,这一观点对于衡量一个物体所需的计算资源非常重要,在网络路由、排序算法和数据压缩都有所应用。

柯尔莫哥洛夫与他创办的学校学生一起丨图源:internat.msu.ru

了解不可能就是最大的可能

按照柯尔莫哥洛夫的标准来看,他自己的一生也是复杂的。柯尔莫哥洛夫于1987年去世,享年84岁。他一生经历过俄国革命、两次世界大战和冷战,而在学术上他几乎触及了数学的一切领域,其影响也远超学术界。无论他的人生历程属于“醉汉游走”,还是“不走回头路的采蘑菇之旅”,这一段历程都难以预测,难以描述。他在描述并应用“不可能”的成功,使概率论真正成为“可能”,由此为无数科学与工程应用开辟了新的天地。当然,对于不可预测性,他的理论也拉大了人类所拥有的直觉和数学理论之间的差距。

对于柯尔莫哥洛夫来说,他的思想既没有消除不确定性,也没有肯定我们世界根本上的不确定。他只是提供了一套严谨的语言来讨论那些无法确定的事情。他曾经说过,“绝对随机”并不比“绝对必然”更有意义,我们无法对不可知的事物存在确切的认知。

但要感谢安德烈·柯尔莫哥洛夫,我们可解释自己何时以及何因不知道。

【文摘】大学生数学竞赛题汇编(5)
【文摘】国际象棋中的趣题妙解
【人物】数学家丘成桐
【文摘】趣味逻辑学问题(6)
【数学】天使,魔鬼游戏
【数学】经典悖论漫游(二)
【程序】八皇后动态图形的实现
【圣经】神的创造:人体的奥妙(3)
【数学】一道怪怪的数学题
【数学】3x+1问题(4)

发表在 数学 | 标签为 , | 留下评论