【文摘】法国的数学家

法语世界 赛先生

法国的数学到底多厉害?
法国数学被认为是最严谨、水平最高的学科。它的数学水平到底高到什么程度呢?
来看一下菲尔兹奖。它号称数学界的诺贝尔奖,是数学界的学术最高奖项,甚至于比诺贝尔奖更珍贵。原因是菲尔兹奖每四年颁发一次,每次2-4个名额,其珍稀度等同于世界杯及奥运会。


灿若星河的法国数学界

虽然拿NBA总冠军十分难,但起码每年都有。若考虑到职业生涯长度,四年一次的大奖,可能很多数学家一辈子都没几次机会能够参与评奖。菲尔兹奖设置规定,只颁发给40周岁以下的“青年数学家”,夸张地说,简直是为数学天才量身定做的。

值得一提的是,法国数学家已经连续获得菲尔兹奖超过20年。菲尔兹奖得主最多的大学分别为:哈佛大学(18位),巴黎大学(16位),巴黎高等师范学院(15位),普林斯顿大学(14位)。需要提醒的是,美国大学里面的科学家并非是美国人,而法国大学里得奖的几乎都是法国人。

巴黎是世界上数学家最集中的地方,比如闻名遐迩的数学大师韦达、梅森、笛卡尔、费马、帕斯卡、达朗贝尔、拉格朗日、泊松、傅里叶、拉普拉斯、柯西等等。历史上很多著名的法国数学家,在微积分领域,法国数学家的数量就占去了几乎1/3。

法国人对于数学界的贡献不可谓不大,从初中数学的韦达定理,到高等数学的代表人物拉格朗日,甚至于近代数学大师庞加莱,法国在几百年的数学历史中,始终保持着旺盛的生命力。

法国数学大师有笛卡尔,韦达,帕斯卡,费马,拉格朗日,拉普拉斯,达朗贝尔,勒让德,蒙日,彭赛列,柯西,傅里叶,庞加莱,伽罗华,格罗藤迪克等等。而这些令无数大学生“闻风丧胆”的数学家,几乎都诞生在17至20世纪的法国。

据统计,法国是世界上获得菲尔兹(Fields)奖人数最多的第二大国,仅次于美国。如果从人口比例来算,法国绝对是世界第一。

法国的数学巅峰是:19世纪的法国数学界四大“天王”——柯西、傅里叶、伽罗华、庞加莱。

有意思的是,2018年1月份,法国总统马克龙访华,其中团队里就有一位法国著名的数学家——塞德里克·维拉尼。他被认为是偏微分方程顶尖数学家,36岁就获得了菲尔兹大奖,人称“数学界的Lady Gaga”。

塞德里克·维拉尼

下面分别介绍一下法国的四大天王数学家:

法国四大天王数学家

01多产数学家——柯西

柯西(Cauchy, 1789—1857)是法国数学家、物理学家、天文学家。著名的复变函数的微积分理论就是由他创立的。柯西在代数、理论物理、光学、弹性理论方面,具有十分突出的贡献。

柯西数学成就不仅辉煌,且数量惊人。柯西全集有27卷,论著有800多篇,他在数学史上是仅次于欧拉的多产数学家。并且他的名字与许多定理、准则一起被铭记在当今许多教材中。

柯西,图片来自famous-mathematicians.com

柯西在纯数学和应用数学方面的功力十分深厚,特别是在数学写作上。他一生一共著作了789篇论文和几本书,其中有些是经典之作。据说,法国科学院“会刊”创刊之时,由于柯西的作品实在太多,使得法国科学院要承担很大的印刷费用,超出了科学院的预算。因此,科学院规定论文最长只能有4页,柯西较长的论文只能投稿到其它地方。

柯西少年时,父亲常带领他到法国参议院内的办公室,并在那里指导他学习,柯西因此有机会遇到参议员拉普拉斯和拉格朗日两位大数学家。他们对柯西的才能十分赏识,拉格朗日认为他将来必定会成为大数学家

柯西在学生时代,有个绰号叫苦瓜,因为他平常像一颗苦瓜一样,安静的不说话,即使说了什么,也很简短,令人摸不着头绪,因此,和这种人沟通,被认为是很痛苦的。柯西的身边没有朋友,只有一群妒嫉他聪明的人。

02传热理论数学大师——傅里叶

傅立叶

让·巴普蒂斯·约瑟夫·傅立叶(Jean Baptiste Joseph Fourier,1768 –1830),法国举世闻名的数学家、物理学家,1817年当选为科学院院士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委员会主席,主要贡献是在研究热的传播时创立了一套数学理论。傅立叶正是由于对传热理论的贡献于1817年当选为巴黎科学院院士。

1822年,傅立叶终于出版了专著《热的解析理论》。这部经典著作将欧拉、伯努利等人在一些特殊情形下应用的三角级数方法发展成内容丰富的一般理论,三角级数后来就以傅立叶的名字命名。

傅立叶应用三角级数求解热传导方程,为了处理无穷区域的热传导问题又导出了当前所称的“傅立叶积分”,这一切都极大地推动了偏微分方程边值问题的研究。《热的解析理论》影响了整个19世纪分析严格化的进程,傅立叶1822年成为科学院终身秘书。

傅里叶极度痴迷热学,他认为热能包治百病,于是在一个夏天,他关上了家中的门窗,穿上厚厚的衣服,坐在火炉边,被活活热死。1830年5月16日,傅里叶卒于法国巴黎。

傅里叶的科学成就,主要在于他对热传导问题的研究,以及他为推进这一方面的研究所引入的数学方法。

03群论之父——伽罗华

伽罗华

伽罗华死于一次近乎自杀的决斗,21岁的他被公认为是数学史上两个最具浪漫主义色彩的人物之一。他是法国天才数学家,是公认的群论概念的主要开拓者,对函数论、方程式论和数论做出十分重要的贡献。在其父亲自杀后,他放弃投身数学生涯,注册担任辅导教师。

1811年10月25日,伽罗华出生于法国巴黎郊区拉赖因堡伽罗华街的第54号房屋内。现在这所房屋的正面有一块纪念牌,上面写着:“法国著名数学家埃瓦里斯特·伽罗华生于此,卒年21岁,1811~1832年”。纪念牌是小镇的居民为了对全世界学者迄今公认的、曾有特殊功绩的、卓越的数学家——伽罗华表示敬意,于1909年6月设置。

伽罗华最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,由此发展了一整套关于群和域的理论,后人为了纪念他,称之为伽罗华理论。正是他这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程碑,同时为数学研究工作提供了新的数学工具——群论。伽罗华对数学分析、几何学的发展有很大影响,标志着数学发展现代阶段的开始。

伽罗华十分彻底地把全部代数方程可解性问题,转化或归结为置换群及其子群结构分析的问题,这成为伽罗华工作中的第一个“突破”。他开创了置换群论的研究,确立了代数方程的可解性理论,从而彻底解决了一般方程的根式解难题。伽罗瓦使用群论的想法去讨论方程式的可解性,整套想法现称为伽罗瓦理论,是当代代数与数论的基本支柱之一。

04天才数学家——庞加莱

亨利·庞加莱

法国天才数学和物理学家庞加莱的研究涉及数论、代数学、几何学、拓扑学等诸多领域,被后人称为“最后一位数学全才”。在庞加莱之前被称为世界数学全才的是高斯。

在爱因斯坦之前,物理学家洛伦兹和数学家庞加莱都已经在这个方向上做了大量的工作,但庞加莱似乎无法接受爱因斯坦的狭义相对论,尽管两个人的结果几乎一样。因此,庞加莱虽然做了很多关于相对论的演讲,但他从来就没提起过爱因斯坦和相对论这两个词。爱因斯坦不仅不引用庞加莱的工作,并且宣称从未读过。

当爱因斯坦的母校苏黎世理工学院要聘请爱因斯坦当教授时,庞加莱写了一封信,大大地夸奖了爱因斯坦一番,最后一段话十分微妙:“我不认为他的预言将来都能被验证,他从事的方向那么多,因此我们应该会想到,他的某些研究会走向死胡同。但同时,我们有希望认为他走的某一个方向会获得成功,而某一个成功,就足够了。”

庞加莱于1912年去世,有位数学界的组织者给爱因斯坦去了一封信,说要出个纪念文集来纪念庞加莱。爱因斯坦拖了四个月才回信说,由于路上耽搁,信刚刚收到,估计已经晚了。

组织者没死心,说晚了也没关系,你写了就行。于是爱因斯坦又过了两个半月回信说,由于事务繁忙,实在没力气写了,最终不了了之。

爱因斯坦最终在1921年的讲演中公正地肯定了庞加莱对相对论的贡献。他评价庞加莱为相对论先驱之一:“洛伦兹已经认出了以他命名的变换对于麦克斯韦方程组的分析是基本的,而庞加莱进一步深化了这个远见……”

法国著名数学家阿达马认为,庞加莱“整个地改变了数学科学的状况,在一切方向上打开了新的道路。”英国著名数学家罗素认为,20世纪初法兰西最伟大的人物就是亨利·庞加莱。他曾说:“当我最近在盖·吕萨街庞加莱通风的休息处拜访他时,我的舌头一下子失去了功能,直到我用了一些时间仔细端详和承受了可谓他思想的外部形式的年轻面貌时,我才发现自己能够开始说话了。”

法国数学人才辈出,几百年间,诞生了闻名遐迩的数学大师,下面再介绍一些影响世界的著名法国数学家。

影响世界的著名法国数学家

01才华横溢的年轻数学大师——帕斯卡

帕斯卡

布莱士·帕斯卡(Blaise Pascal),公元1623年6月19日出生于多姆山省奥弗涅地区的克莱蒙费朗,法国数学家、物理学家、哲学家、散文家。帕斯卡成就众多,他在数学和物理学方面所做出的贡献,在科学史上占有极其重要的地位。

帕斯卡的数学造诣非常深,除了对概率论等方面具有卓越贡献外,他最突出的是著名的帕斯卡定理。帕斯卡定理是射影几何的一个重要定理,即“圆锥曲线内接六边形其三对边的交点共线”,这是他在《关于圆锥曲线的论文》中提出的。

在代数研究中,他发表过多篇关于算术级数及二项式系数的论文,发现了二项式展开式的系数规律,即著名的“帕斯卡三角形”。他与著名数学家费马共同建立了概率论和组合论的基础,并得出了关于概率论问题的一系列解法。他研究了摆线问题,得出了不同曲线面积和重心的一般求法。他计算了三角函数和正切的积分,最早引入了椭圆积分。

帕斯卡研究了液体的力学性质,发表了论文《关于流体平衡的实验》,著名的帕斯卡定律就是记载在这篇论文中的。为了纪念帕斯卡在压强研究方面的杰出贡献,国际单位制中用“帕斯卡”来命名压强的单位。

十分遗憾的是,如此才华横溢的青年,竟然在风华正茂、大有作为的时候,决定放弃了科学研究,投身到神学中。他在少年时期曾信仰宗教,有一天,他在巴黎乘马车发生了意外,差点掉进河里。受惊之余,他以为大难不死,必有神明保佑,于是,决心放弃科学去研究神学。甚至走向了极端,把带尖刺的腰带缠在腰上,当他认为大脑中有不够“虔诚”的念头出现时,他就用手去打腰带惩罚自己,最终如此折磨自己,年仅39岁就去世了。

帕斯卡还有个严重的缺点,不爱体育活动,在他18岁时身体就开始衰弱,始终病魔缠身,30岁刚出头就疾病不断,由于体弱多病,使科学研究工作受到了很大影响。

02曾经是拿破仑的数学老师——拉普拉斯

拉普拉斯

皮埃尔-西蒙·拉普拉斯(1749年3月23日-1827年3月5日),法国著名的天文学家和数学家,是天体力学的集大成者。1749年生于法国西北部卡尔瓦多斯的博蒙昂诺日,1816年被选为法兰西学院院士,1817年任该院院长。

1812年发表了重要的《概率分析理论》一书,在该书中总结了当时整个概率论的研究,论述了概率在选举审判调查、气象等方面的应用,导入”拉普拉斯变换“等。在拿破仑皇帝时期和路易十八时期两度获颁爵位。拉普拉斯曾任拿破仑的老师,因此和拿破仑结下不解之缘。1827年3月5日卒于巴黎。
拉普拉斯主要集中于天体力学的研究。他把牛顿的万有引力定律应用到整个太阳系,1773年解决了一个当时十分著名的难题:解释木星轨道为什么在不断地收缩,而同时土星的轨道又在不断地膨胀。拉普拉斯用数学方法证明行星平均运动的不变性,即行星的轨道大小只有周期性变化,并证明为偏心率和倾角的3次幂。这就是著名的拉普拉斯定理。

拉普拉斯在数学上有很多贡献,比如1812年他发表了重要的《概率分析理论》一书。他发表的天文学、数学和物理学的论文有270多篇,专著合计有4006多页。其中最有代表性的专著有《天体力学》、《宇宙体系论》和《概率分析理论》。

1796年,他的著作《宇宙体系论》问世。由于他长期从事大行星运动理论和月球运动理论方面的研究,尤其是他特别注意研究太阳系天体摄动、太阳系的普遍稳定性问题以及太阳系稳定性的动力学问题。因此他被誉为法国的牛顿和天体力学之父。

拉普拉斯的《宇宙体系论》是经典天体力学的代表作。在这部书中,他独立于康德,提出了第一个科学的太阳系起源理论——星云说。康德的星云说是从哲学角度提出的,而拉普拉斯则从数学、力学角度充实了星云说,因此,人们常把他们两人的星云说称为“康德-拉普拉斯星云说”。

03法国解析几何之父——笛卡尔

勒内·笛卡尔

勒内·笛卡尔1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷,1650年2月11日逝世于瑞典斯德哥尔摩,是全球著名的哲学家、数学家、物理学家。

笛卡尔对现代数学的发展做出了巨大的贡献,他因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,开拓了近代唯物论且提出了”普遍怀疑”的主张。

哲学大师黑格尔称他为“现代哲学之父”。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学,堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。

笛卡尔方法具有双重意义。首先,他把“什么是知识”这个认识论的基本问题置于他的哲学体系的中心。由于早期哲学家力图描写世界的本质,但笛卡尔教导这样的问题若不和“我怎么能知道?”联系在一起,就无法获得满意的回答。

其次,笛卡尔认为不应该从信仰开始,而是从怀疑开始(这恰好与圣·奥古斯丁及大多数中世纪神学家的看法相反,他们认为信仰第一)。无疑笛卡尔确实得出了正统神学的结论。但读者对他的倡导方法远比对他得出的结论更为重视,因此,教会担心他的著作会起破坏性作用不是没有理由的。

笛卡尔强调科学的目的在于造福人类,让人成为自然界的主人和统治者。他反对经院哲学和神学,提出怀疑一切的“系统怀疑的方法”。但他还提出了“我思故我在”的原则,强调不能怀疑以思维为其属性的独立的精神实体的存在,并论证以广延为其属性的独立物质实体的存在。他认为上述两实体都是有限实体,把它们并列起来,这说明了在形而上学或本体论上,笛卡尔是典型的二元论者。

笛卡尔还企图证明无限实体,也就是上帝的存在。他认为上帝是有限实体的创造者和终极的原因。笛卡尔的认识论基本上是唯心主义的。他主张唯理论,把几何学的推理方法和演绎法应用于哲学上,认为清晰明白的概念就是真理,提出“天赋观念”。

笛卡尔的自然哲学观与亚里士多德的学说是完全对立的。他认为,所有物质的东西,都是为同一机械规律所支配的机器,甚至人体也是如此。笛卡尔又认为,除了机械的世界外,还有一个精神世界存在,这种二元论的观点后来成了欧洲人的根本思想方法。

笛卡尔最著名的思想就是“我思故我在”,意思是:“当我怀疑一切事物的存在时,我却不用怀疑我本身的思想,因为此时我唯一可以确定的事就是我自己思想的存在”。这句被笛卡尔Descartes当作自己的哲学体系的出发点的名言,在之前被认为是极端主观唯心主义的总代表,而遭到严厉的批判。

笛卡尔对数学最重大的贡献是他创立了解析几何。笛卡尔成功地将当时完全分开的代数和几何学联系到了一起。在Descartes的著作《几何》中,笛卡尔曾向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。笛卡儿引入了坐标系以及线段的运算概念。笛卡尔在数学上的成就为后人在微积分上的工作提供了坚实的基础,而后者又是现代数学的重要基石。

现在使用的许多数学符号都是笛卡尔最先开始使用的,包括已知数a, b, c以及未知数x, y, z等,还有指数的表示方法。他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。另外,还有微积分中常见的笛卡尔叶形线也是他发现的。

在物理学方面,笛卡尔也有所成就。比如他在《屈光学》中第一次对光的折射定律提出了理论论证。他还解释了人的视力失常的原因,并设计了矫正视力的透镜。在力学上,笛卡尔发展了伽利略运动相对性的理论,强调了惯性运动的直线性。笛卡尔发现了动量守恒原理。他还发展了宇宙演化论、漩涡说等理论学说,尽管具体理论有不少缺陷,但仍然对以后的自然科学家产生了很大影响。

笛卡尔Descartes还用光的折射定律来解释彩虹现象,并通过元素微粒的旋转速度来分析颜色。

笛卡尔把他的机械论观点应用到天体,发展了宇宙演化论,形成了他关于宇宙发生与构造的学说。笛卡尔还创立了漩涡说。他认为太阳的周围有巨大的漩涡,带动着行星不断运转。物质的质点处于统一的漩涡之中,在运动中分化出土、空气和火三种元素,土形成行星,火则形成太阳和恒星。

笛卡尔认为天体的运动来源于惯性和某种宇宙物质旋涡对天体的压力,在各种大小不同的旋涡的中心必有某一天体,以这种假说来解释天体间的相互作用。笛卡儿的太阳起源的以太旋涡模型第一次依靠力学而不是神学,解释了天体、太阳、行星、卫星、彗星等的形成过程,比康德的星云说早一个世纪,成为17世纪中最具权威的宇宙论。

17-18世纪彼时的法兰西数学界,群星璀璨,英杰辈出,数学水平远超其他国家。抛开虚无缥缈的基因论不谈,其实这一现象的产生实属历史的必然。

04代数几何上帝——格罗藤迪客

亚历山大·格罗滕迪克(Grothendieck,1928年3月28日-2014年11月13日),是现代代数几何的奠基者,被誉为是20世纪最伟大的数学家。他的主要成就:奠定了现代代数几何学基础,其代表作品是EGA、SGA、FGA。

格罗藤迪克

格罗藤迪克1928年3月28日出生于德国柏林。他的父亲在二战时被纳粹杀害。战争结束后,格罗滕迪克(Grothendieck)去法国学习数学,先后师从布尔巴基学派的分析大师让·亚历山大·欧仁·迪厄多内和著名的泛函分析大师洛朗·施瓦茨,值得一提的是,他在二十几岁时就成为当时研究很热的拓扑向量空间理论的权威。他创立的概型理论奠定了现代代数几何的基础。

由于格罗滕迪克许多开创性的工作,使得代数几何这个古老的数学分支焕发出了新的活力,最终导致皮埃尔·德利涅完全证明了韦伊猜想,这被认为是20世纪纯粹数学最重大的成就之一。

由于格罗滕迪克出色的领导,巴黎高等研究所被公认的世界代数几何研究中心,他也为此获得了1966年国际数学最高奖菲尔兹奖。

格罗滕迪克是一个激进的和平主义者,他为了战争而放弃了自己从事的数学研究。在越战期间,他在河内的森林里为当地的学者讲授范畴论。1970年,只有42岁,正值研究顶峰的他彻底放弃了数学,离开了巴黎高等研究所。后来,他在法国的蒙彼利埃大学教书,直到60岁退休。1988年他60大寿时,格罗滕迪克出人意料地谢绝了瑞典皇家科学院的向他颁发的克拉福德奖和25万美元的奖金。理由是他认为应该把这些钱花在年轻有为的数学家身上。

格罗滕迪克是公认的现代最伟大和最有影响力的数学家之一。他创立的现代代数几何博大精深的理论体系所带来的巨大变革,几乎影响所有的核心数学分支。当人们翻开任何一本现代代数几何教材或专著,都会频繁地看到如Groth. topology Groth. cohomology,Groth. ring 等名词。

值得一提的是,在1970年的国际数学家大会上,苏联盲人数学家L Pontrjagin作关于“微分对策”的报告, 其中就谈到了用导弹追踪飞机的问题。格罗滕迪克愤怒走上台夺下话筒,抗议他在数学会议上提到军事。

G Hardy曾说过:“真正的数学对战争毫无影响,认为是一门‘无害而清白’的职业”。或许是这个原因让格罗滕迪克选择了数学。但格罗滕迪克逐渐失望地发现数学往往被用在军事上,比如像他研究的代数几何就被用来编制密码,而且数学研究大多直接或间接得到军方支持,显然他认为与理想已经背道而驰。于是在1970年,他便永久地离开了他所喜爱的数学事业,转向了裁军活动及经营农场。

05法国数学花木兰——索菲·热尔曼学

索菲·热尔曼(1776~1831年),是法国的女数学家。出身在巴黎一个殷实的商人家庭,从小热爱数学,但家庭不鼓励。她父亲是一位法国银行总裁。

索菲·热尔曼

热尔曼从小喜欢数学源于一个故事。有天,热尔曼读到罗马攻占叙拉古城时,阿基米德还在专心研究一堆沙子组成的几何图形,没听到某个罗马士兵的问话,由此招来杀身之祸。热尔曼当时想,能让人如此痴迷于一个东西,甚至不顾生死,这个东西一定是世界上最美的、最迷人的。于是,她选择了数学,而且还自学了微积分。

法国女性当时在学术上受到严重歧视,比如巴黎综合工科大学(Polytechnique)就不收女生。热尔曼想了个办法,她搞来这个学校所有的数学讲义,自己学习钻研,而且还以男生Le Blanc的名义,上交了作业。法国著名数学家拉格朗日读到热尔曼的论文后,大为欣赏,决定去Le Blanc家亲自面见这个聪明的高材生。热尔曼女扮男装,但最终穿帮了,但拉格朗日却欣然收下热尔曼为徒。

热尔曼选择当时名声最盛的费马大定理作为研究方向,不久,她把自己的研究结果寄给数学家高斯(Gauss),获得高斯非常高的评价,而热尔曼的这个研究结果,被认为当时是最好的,那时她仅二十岁。

1816年,法国科学院的一则悬赏内容在数学界炸开了锅,悬赏是关于弹性表面的数学表达式,没有想到热尔曼最终胜出,成为第一位凭借自己的学术成绩获得“科学院金质奖章”的女性。但十分可惜的是,这位被称为“法国数学花木兰”、近代史上第一位作出重大成就的女数学家,尽管在数论、应有数学等方面硕果累累,仍然受到歧视。

热尔曼,一生未获得任何学位、没有当过大学教授,但在她的死亡证明书上,身份被登记为“无职业未婚妇女”。后人为纪念热尔曼对数论的巨大贡献,将p与2p+1质数称为“苏菲·热尔曼质数”。巴黎的一条街道和一所高中,也都以热尔曼的名字命名。

法国20世纪最重要的三位数学家嘉当,韦伊,格罗藤迪克。

法国20世纪数学家三杰

01数学大师陈省身的老师——嘉当

法国20世纪最重要的三位数学家嘉当,韦伊,格罗藤迪克。03
法国20世纪数学家三杰01数学大师陈省身的老师——嘉当

埃利·嘉当

埃利·嘉当,亦译作埃里,卡当(Joseph Cartan,1869年4月9日─1951年5月6日),法国著名数学家。嘉当生于萨瓦的多洛姆厄,在1888年成为巴黎的巴黎高师的一名学生。他在李群理论和其几何应用方面奠定基础,他也对数学物理,微分几何、群论做出了重大贡献。

嘉当对近代数学的发展做出了极大的贡献。其中,流形上的分析是当今极为活跃的数学分支,嘉当称得上是该分支的重要缔造者,他是当之无愧的最伟大的数学家之一,被誉为古典微分几何之父。

陈省身1936年9月来到巴黎,拜见嘉当。嘉当当时德高望重,名声很大,由于公务私务都十分繁忙,他只在周四下午会见学生,届时,办公室门口总是排着长龙。

陈省身与嘉当第一次会面,对方给的见面礼,是一道数学题——与网几何有关。陈省身当时怎么解,也解不出答案。陈省身觉得第一道题就做不出,太丢人,从此,不好意思再去见嘉当。过一段时间,陈省身与嘉当在数学所的楼梯上偶然相遇。

嘉当问:“怎么好久没有见你?”陈省身如实相告。嘉当笑了笑,说:“没关系,那是道难题,慢慢做。”又说:“你今后尽管来。”陈省身后来才去见嘉当。由此,双方愈来愈了解对方。

有一天,嘉当告诉陈省身:“你今后每两星期到我家里去一次,交谈时间为一小时。”无疑这等于是给陈省身开小灶。数学大师面对面的指导,让陈省身学到了老师的数学语言及思维方式。

陈省身(1911年10月28日~2004年12月3日),祖籍浙江嘉兴,是20世纪最伟大的几何学家之一,被誉为“微分几何之父”;前中央研究院首届院士、美国国家科学院院士、第三世界科学院创始成员、英国皇家学会国外会员、意大利国家科学院外籍院士、法国科学院外籍院、中国科学院首批外籍院士。

1930年毕业于天津南开大学。1934年获清华大学理学硕士学位。1936年获德国汉堡大学理学博士学位。1984年至1992年任天津南开数学研究所所长,1992年起为名誉所长。

2004年12月3日,陈省身在天津医科大学总医院逝世,享年93岁。陈省身发展了Gauss-Bonnet(高斯一博内)公式,被命名为“Gauss-Bonnet-陈省身公式”。02布尔巴基学派的精神领袖——韦伊

韦伊

韦伊是法国数学家。1906年5月6日生于法国巴黎。由于他在数论中的代数几何方法的取得的光辉成就,1979年荣获沃尔夫数学奖,时年73岁。

1928年回国后,便写出了论文《代数曲线上的算术》,并获得博士学位,时年仅22岁。1930至1932年去印度阿里格尔的穆斯林大学任教授。第二次世界大战临近,法国开始扩军备战,韦伊不愿当兵,1939年夏天因逃避兵役,于1940年被初关进了监狱。不久法国就沦陷。1945年去巴西聖保罗大学任教。1947至1958年任美国芝加哥大学教授,1958年任普林斯顿高等研究所教授。韦伊是美国国家科学院的外籍院士。

韦伊是法国布尔巴基学派的创始成员和杰出代表之一,他思维敏捷,才华横溢,在二十歲时,他就写出了第一篇论文《论负曲率曲面》,把卡勒曼不等式由极小曲面推广到一般的单连通曲面,并指出它对于多连通曲面不成立。

韦伊是一位博学多才的数学家。在将近半个世纪的歲月里,他相继在数论、拓扑学、调和分析、群论、代数、代数几何等重要分支取得了丰硕的成果。韦伊是布尔巴基学派的精神领袖。数学结构的观念是布尔巴基学派的观点。

提到韦伊,就不得不说到法国“布尔巴基”学派,布尔巴基学派是一个对现代数学有着极大影响的数学家的集体。其中大部分是法国数学家,主要的代表人物是韦伊、迪多涅、嘉当、薛华荔等人。

03法国数学及概率论大师——棣墨弗

亚伯拉罕·棣莫弗

亚伯拉罕·棣莫弗,1667年5月26日生于法国维特里的弗朗索瓦;1754年11月27日卒于英国伦敦。

棣莫弗一次偶然读到牛顿的《原理》(Principia),他信手一翻,却惊奇地发现:“数学竟然如此精深如此美丽的一门学问!”于是,他不仅买下那本书,还撕下书页,以便揣在口袋随时研读。Chancellor W.E曾说:“学习数学是为了探索宇宙的奥秘。如所知,星球与地层、热与电、变异与存在的规律,无不涉及数学真理。如果说语言反映和揭示了造物主的心声,那么数学就反映和揭示了造物主的智慧,并且反复地重复着事物如何变异为存在地故事。”

概率论肇始于17世纪,卡尔达诺、费马、帕斯卡等人是概率论早期的研究者,他们所研究的主要是关于相互独立随机事件的概率——机会方面的问题。比如讨论如赌博、有奖抽彩过程中的“机会”。

后来,人们要求解决与大量事件集合有关的概率或期望值问题,比如奖券的总数很大,已知每一张奖券中奖的机会都相等,那么抽取1000张、10000张奖券中奖的概率有多大呢? 如果要保证中奖的可能性达到90%,那么至少应该购买多少张奖券。

考虑一系列随机事件(如随机地抛掷硬币),某一事件出现(如抛掷硬币时出现正面)之概率为P,n表示所有随机事件的总数,m是某一事件出现的数目,那么该事件出现的次数(m)与全体事件的次数(n)之比将会呈现什么规律呢? 这成为17世纪概率论中一个十分重要的问题。

较早期的概率史上有三部里程碑的著作:一是棣莫弗的《机遇论》,二是伯努力的《推测术》,三是拉普拉斯的《概率的分析理论》。

棣莫弗工作的统计意义在于:首先,采用频率估计概率这个特例而言,观察值的算术平均的精度,与观察次数N的平方根成比例,这个可看做人类认识自然的一个重大进展。

其次,棣莫弗的工作对数理统计学最大的影响,当然还在于现今以他的名字命名的中心极限定理。棣莫弗做出他的发现后约40年,拉普拉斯建立了中心极限定理较一般的形式,独立和中心极限定理最一般的形式到20世纪30年代才最后完成。

法国数学为什么这么厉害

01法国数学崛起的原因

法国数学崛起的历史原因,有一个学者、两大君主、一个机构,起到了至关重要的巨大作用:一个学者是马兰·梅森;法国两大君主指的是:路易十四和拿破仑;一个机构指的是:法国科学院。

马林·梅森(Marin Mersenne, 1588-1648)是17世纪法国著名的数学家和修道士,他入选了100位在世界科学史上有重要地位的科学家。马林·梅森最早系统而深入地研究2^P-1型的数,数学界为了纪念他,就把这种数称为梅森数,并以M_p记之,即M_p=2^P-1。如果梅森数为素数,则称之为梅森素数。

法国数学一切的起因,开始于17世纪中叶修道院里的数学家马兰·梅森寓所。马兰·梅森少年时毕业于耶稣会学校,是法国数学大师笛卡尔的同校学长。

梅森才华横溢、平易近人,他由于个人的魅力与全欧洲的科学家都建立起良好的联系,在梅森身边也聚集着一大批学者,他们定期在梅森的寓所讨论科学问题。后来,梅森寓所这些科学家沙龙聚会,被称作梅森学院,在当时是全欧洲的学术交流中心。历史上,就有大名鼎鼎的神童帕斯卡,当年他仅十四岁,但已经显出了非凡的数学天分。

梅森把帕斯卡接纳进梅森学院,并且鼓励帕斯卡在托里拆利的基础上进一步展开研究,由此帕斯卡不负众望提出了著名的帕斯卡定律。梅森的朋友费马,与帕斯卡同时开拓了概率论的数学分支,他被后人称誉为最杰出的业余数学家,因为很多不懂数学的人,也曾经听过费马定理。

1648年梅森去世,人们在他的遗产中发现梅森与欧洲78位学者的十分珍贵的信函,对很多科学领域均有涉猎,其中就包括很多数学大师费马、伽利略、托里拆利、笛卡尔、惠更斯。法国最珍贵的遗产——梅森学院,成为了现如今的巴黎皇家科学院,1666年,巴黎皇家科学院建立。

此后,法国年轻的路易十四决定建设一所官方科学院来推动法国科学的发展,巴黎皇家科学院被正式定名,路易十四提供了大量资金的赞助,目的是打消科学家的生活及研究压力。路易十四的财务大臣柯尔贝尔虽然平常精打细算,但也开始大笔资金投入迅速收拢一大批国内外杰出的人才。

在外来科学家中,最著名的就是乔瓦尼·多美尼科·卡西尼(Giovanni Domenico Cassini),他来自意大利博洛尼亚大学,是当时杰出的天文学家,执掌过博洛尼亚大学天文学系许多年,卡西尼对木星和火星观测闻名世界,在路易十四时期成为了巴黎天文台的掌门人。从此以后,法国巴黎科学院在强大的财政资金支持及惠更斯-卡西尼双核心的支撑下,法国数学凭借路易十四的力量,在欧洲强势崛起,一举成为欧洲大陆的学术中心。

1672年,巴黎科学院又迎来了德国年轻的政治家莱布尼茨。莱布尼茨不但是德国的哲学家、数学家,而且是历史上少见的通才,被誉为十七世纪的亚里士多德。莱布尼茨又是一名律师,经常奔波外地,因此,他许多的公式都是在颠簸的马车上完成的。

莱布尼茨在数学史和哲学史上都拥有十分重要的地位。特别是在数学上,他和牛顿先后独立发现了微积分,莱布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还发明并完善了二进制。

在哲学上,莱布尼茨的乐观主义最为著名:他说,“我们的宇宙,在某种意义上是上帝所创造的最好的一个”。他和笛卡尔、巴鲁赫·斯宾诺莎被认为是十七世纪三位最伟大的理性主义哲学家。

莱布尼茨来到巴黎,原本是来承担外交任务的,没有想到却结识了惠更斯及卡西尼,从此走上科学之路。在惠更斯的指导下,莱布尼茨开始系统地学习数学,在大师指导之下,数学功力快速提高。

在当时巴黎科学院的努力下,很多不计出身、只唯学术,几乎名噪一时的大师均被网罗到它的名下。比如百科全书派首脑达朗贝尔,是出身低微的私生子,但由于在学界小有成就,年仅24岁就被提拔为数学部副院士,并在巴黎科学院获得一席之地,法国科学院在当时就能够做到不拘一格降人才。

在1768年,被法国科学院接纳的还有出身贫贱的拉普拉斯(法国著名的天文学家和数学家,天体力学的集大成者),年仅19岁的农家子弟第一次在法国表现出了不凡的数学天赋。

在腓特烈大帝去世后,巴黎科学院又从竞争对手德国柏林科学院挖来年近半百的拉格朗日,拉格朗日和拉普拉斯同样成为座上嘉宾。法国从而聚集达朗贝尔、拉普拉斯、拉格朗日三大数学巨头,极大巩固了巴黎科学院在世界上的学术地位。

拉普拉斯1796年,任法国科学院副院长,次年升为院长。拉普拉斯利用自己所处的高位,一手改进了法国的高等教育。他改建了法国高等师范学校和巴黎综合工科学校,并与拉格朗日共同投入到教学工作中,聘请了一批世界一流的教授。其中包括射影几何的发现者蒙日(Gaspard Monge),革命期间曾避祸逃出巴黎,如今被邀请过来讲授射影几何。拉格朗日甚至亲自聆听他的课堂首秀。

高等师范学校的首批学员包括在热传导领域颇有成就的地方教师傅里叶,后来,蒙日与傅里叶随拿破仑远征埃及,一直作为随军学者服务部队。

法国科学院培养出了19世纪上半一大批法兰西群星:比如著名的物理学家安培(Ampère),他的名字被用作计量电流的单位;卡诺(Carnot),热力学创始人之一;菲涅耳(Fresnel),他在光学研究中带领波动说与牛顿粒子说展开对抗;还包括泊松(Poisson),他在数学及物理领域留下自己冠名的定理。

因此,法国数学的第一阶段,依靠的是学者对学科的自发性热爱;而第二阶段,依靠的是开明君主资金的大力支持;第三阶段,依靠的是先进的学术培养制度。

巴黎科学院十分懂得怎么样去尊重和吸纳人才,比如皇家学院开立之初,核心人物惠更斯和卡西尼都不是法国人,但法国政府却十分信任且把学院委托给他们两位;莱布尼茨长期居住在德国,但仍然是学院的通讯院士;寒门低微的达朗贝尔和拉普拉斯,凭靠着学术成就仍然可以跻身贵族之间;拉格朗日是意大利人,年过半百仍然受到法国的邀请,而且在重建中起到了巨大作用。

法国自17世纪20年代始,涌现出一大批群星璀璨的数学大师,每一位放在全球数学史上,都是娇傲的角色。比如达兰贝尔、拉格朗日、拉普拉斯、蒙日、蓬斯莱、柯西、伽罗瓦、庞加莱等等。

02法国是一个十分崇尚数学的国家

很多人认为,法国人在数学计算方面远比中国人差,认为法国人数学不行,或者法国人不重视数学。实际上,数学人才在法国非常吃香。在法国,数学人才要比商业管理、计算机等热门专业的大学生找到心仪工作的概率都高很多。

比如法国高等教育与研究部2013年12月18日连续四年公布了有关综合性大学毕业生就业率的调查数据。调查惊人发现,法国就业市场上最受欢迎的人才是数学!其中,从事数学科研人员就业率高达惊人的98%。

法国拥有一个著名的综合理工学院(école Polytechnique),它在法国教育界享有极高的美誉,它的学校名字本身就代表着严格的选拔和杰出的学术,法国综合理工学院在法国工程师大学校排名中常常位居第一名:尤其是在《快车》周刊、《大学生》月刊、《挑战》周刊的排名中位居榜首。美国著名的麻省理工学院认为它是法国最负盛名的工程师大学校。

曾在巴黎第六大学的Jussieu 数学所读博士的学生说:“从历史和传统来看,法国是一个非常崇尚数学的国家,而且数学的传统非常优良,这是一个名副其实的数学大国与强国。”

纵观法国科学的历史,就会发现很多西方著名的数学家出自法国:从近代概率论的奠基人帕斯卡到数学大师傅里叶、拉格朗日,从解析几何之父笛卡儿到拉普拉斯方程的发现者西蒙·拉普拉斯,从画法几何创始人蒙日到概率论领域负有盛名的德蒙马特等等。值得一提的是,在17世纪至19世纪期间,法国在全球数学领域绝对称得上是佼佼者。

德国著名数学家高斯在他的传记中有一段对话,说有一个外乡人在法国巴黎问当地人:“为什么法国历史上出了那么多的伟大数学家?”法国人回答:“我们最优秀的人学习数学。”外乡人又去问法国数学家:“为什么法国的数学始终闻名世界呢?”数学家回答:“数学是我们传统文化中最优秀的部份。”

事实上,数学在法国就业市场上抢手,和数学在科技社会中肩负基础学科的角色有很大关系,数学是现代科技社会最基础与核心的学科,相对于其它学科,比如物理、化学、生物、力学等都具有十分重要的影响力及地位。

数学分为纯数学与应用数学,事实上,很多科研工作都和数学产生十分重要的逻辑性关系,比如计算机偏算法就属于应用数学领域。甚至银行金融系统,比如法国巴黎银行(BNP Paribas)、法国兴业银行(Société Générale)或法国的能源公司,他们需求的研究人才也大多看重数学人才,而且更多的是应用数学。因此,在法国,无论学院派还是实用派,数学人才在法国就业市场上占有重要的一席之地。

03法国的数学教育及严苛的教育体系

法国高等教育被某些人认为是世界上最难最严格的应试教育体系,也就是预科(prepa)体系。法国的学生必须在那两年(或三年)时间里,需要十分努力地学习微积分、线性代数的技巧,来应付被认为世界上“最难的高考”。

事实上,法国在完成基础教育之后的高等教育阶段,拥有着世界上独一无二的“双轨制”高等教育体系。法国有90所公立大学,还有240多所工程师学院,230多所高等商学院以及较少的高等艺术学院、建筑设计学院等高等教育机构。

法国每年大约有近60万名高中毕业生参加全国的会考,根据统计,仅有85%的学生可以达到分数线。达标者中90%的人直接升入公立大学就读,另外大约10%的尖子生,则会选择进入“预科学校”,专门进行两年的“应试教育”。最终,经过残酷的淘汰及选拔,获胜者能够进入法国培养精英人才的“大学校”。这样算下来,每年法国学生中只有不到8%的幸运儿能够升入大学了象牙塔的塔尖中。

由此可见,法国公立大学实际上是开放型的高等教育机构,是法国高等教育民主化、平等化的表征。相比之下,“大学校”则相对封闭,是专门培养青年精英的学校。重要的是,两类高等教育机构在投资经费、学习条件、教育和管理模式、修业年限、学位文凭以及就业前景等方面都大不相同。

法国有一种说法是,假如并非每一个精英大学校的学生都是法国政治、金融及企业界的领袖,至少可以说,在政治、金融及企业领袖们几乎都是精英大学校的毕业生。值得一提的是,从本世纪初开始,法国政府开始为高中阶段之后的“预备学校”组织统一的全国入学考试,因此,在平民与精英教育方面,法国搞得相当制度化。

法国数学有意思的一个地方,其他国家小学生数数,都是从1顺次递加数到100,而法国小孩是一百以内都开始有加减法。比如法国人把70说成60+10(Soixante-dix),71是60+11,99不念99,念4×20+10+9(Quatre-vingt-dix-neuf),甚至于连乘法都有了。之所以如此复杂,原因是法语数字不是纯粹的十进制,而采用的是十进制、二十进制、六十进制的混合,他们用十进制的数字去表达二十、六十进制的算法,无疑明显增加了计算步骤。

法国人对推算相当感兴趣,教学上也以此为重点。比如法国学生不会背公式,学校把数学当作锻炼学生的思维体操。考试时,学校会给学生留出大量的时间,等待孩学生们慢慢推导,推出来再慢慢做题。法国学生做题,都是逐步推导,一点也不急,也从不跳步走,而且非常享受这个推导的过程。

在推导期间,学生的逻辑思维能力和创造力获得了锻炼,尤其是自己推导出来的公式十分有成就感,学生们往往对这门学科也会非常喜爱。

美国普特南数学竞赛题(5)
美国普特南数学竞赛题(4)
美国普特南数学竞赛题(3)
Conway: 游戏人生
牵涉到取整的数学概率游戏
著名初等数学问题集
来自自然数的挑战
有趣的自然数拆分
有关孪生素数的一个有趣猜想
素数之恋-伯恩哈德·黎曼
等分布理论简介
数学家波利亚
物理学之神奇的数
鸟和青蛙
无穷的奥秘

发表在 数学 | 标签为 , , | 留下评论

【人物】奥康姆剃刀

创造科学

奥康姆的威廉(William OF Ockham,1287-1347),又名为Ockham(有时候的拼写是Occam),是一位生活在14世纪、相信圣经的英国经院哲学家。他反对他那个年代的教会制度,因为当时的教会抛弃了圣经明确的教导,反去追求权力、影响力和财富。令他更广为人知的是他用‘奥康姆剃刀’逻辑原则解决问题。虽然这一逻辑并非他首创,却因他的有力运用而以他命名。

奥康姆的剃刀

‘奥康姆的剃刀’源于拉丁语中的一个短语,即“Entia non sunt multiplicanda sine necessitate”,翻译过来就是“如无必要,勿增概念”。这个概念被强解为“在所有条件都平等的条件下,最简单的解释往往就是正确的。”1 然而,奥康姆并不主张自然本质总是遵循最简单的逻辑,也不主张简单的解释就凌驾更好的、复杂的解释;更勿论简化原则能够否定解释所有数据的必要性。反之,他提倡人们不应该添加一些非必要的原因来解释现象的本质。

他写道:

“在没有已知理由的前提下,不应该对任何事情进行设定,除非它能自证,或通过实验获知,又或是圣经权威能够证实。”2 (译自原文)

今天使用奥康姆剃刀的怀疑主义者和无神论者都必然排除了最后这一点,这就导致了他们对这个概念的误用。举个例子,无神论者喜欢说他们的无神思维优于有神思维,因为少了一个概念,因此也就更简单。但是奥康姆给世界带来的并非等同于14世纪的那个“简单至上”的原则,而是要表明他相信神至高无上的话语的权威性,同时也赞成用理性和洞察力去衡量所有事情的起因。

为什么称为‘剃刀’?

奥康姆那个时代过去很久之后,“奥康姆的剃刀”这个名词才在1852年英国数学家威廉·汉密尔顿(William Hamilton)的作品中首次面世。3有些人认为把它称为一把‘剃刀’是因为它是指把那些不必要的解释给‘刮掉’。但是这可能是现今的事后解释。其他人指出在橡皮擦之前,若然要修改书写中的错误,是要用一把剃刀把字体刮掉。这个原则跟‘剃刀’扯上关系并不是因为其对象很重要,而是由于它是一种思想矫正法——可以说是‘奥康姆的橡皮擦’。

奥康姆的教育经历

奥康姆生于英国萨里的奥康姆村庄,他年轻时就进入伦敦圣方济(方济各会)并接受早期教育,之后继续在牛津大学攻读神学。他接受的教育包括了逻辑学,他认为这是在评价任何观点时都不可或缺的。事实上,在他所有涉及到的所有争议中,“逻辑学注定成为他迎战对手的主要武器。”4

奥康姆受审

在牛津大学,学生们都被要求对官方的神学教材(《彼得伦巴德语录》)发表评论。奥康姆对这门功课(也称为授秩礼)的观点被该大学神学院认定为不够正统,所以他在离校时没有获得神学硕士学位。教会领袖也不同意奥康姆的观点。在1324年,教宗若望十二世传召奥康姆到位于法国阿维尼翁的教皇法院,在一个由六位神学家组成的委员会面前申辩。然而,他的“授秩礼”观点从未被官方宣告为异端。4

奥康姆与教宗若望十二世

在阿维尼翁期间,奥康姆居住在当地方济会的修道院里。在那他遇见了方济会的主要行政官员,切塞纳的迈克尔(Michael of Cesena),而当时迈克尔与教宗若望正为财富的问题争论不休。方济各会修士们认为要跟随基督和使徒们的样式,所以过非常贫穷的生活,这和阿维尼翁教皇宫殿的奢华形成了鲜明的对比。教宗若望为他们的教会追求大量财富,而方济各会修士们的生活方式不但没有支持,反而形成一种隐晦的指责。

迈克尔让奥康姆研究三份教皇诏书,5 里面记载了之前教宗若望十二世对运用财富的论述。从这几份诏书中,奥康姆得出结论,教宗若望不仅是认识错误,而且已经是固执己见地离经叛道,他因此也就丧失了身为教皇的权力。简而言之,奥康姆表示抗议,认为若望是一位伪教宗。事实上,奥康姆俨然成为了人们眼中的‘新教徒第一人’,这比天主教大百科全书对这个问题的定义更加权威。6

奥康姆是一位相信圣经的基督徒,他认为上帝是唯一的第一因和权威——这是上帝在他的话语(《圣经》)中向全人类启示的事实。这种高举圣经权威的呼声,被在之后不到两个世纪的马丁路德在其宗教改革中以‘唯独圣经’的教义再次重申。这就是说,圣经是其中所有内容的最高权威。而其他一切,特别是人的设想都要服从圣经,并按照上帝的话语进行修正。

随着各方之间的关系不断恶化,迈克尔、奥康姆和一些方济会的支持者于1328年5月离开阿维尼翁,逃到在巴伐利亚的神圣罗马帝国皇帝路易四世(路德维希)那里寻求庇护,而路易四世也成为奥康姆的保护人。教宗若望迅速将奥康姆和他的同伴逐出教会,他们被逐并不是离经叛道,而是因为挑战教皇的权威(比如没有他的允许就擅自离开阿维尼翁)。教宗若望之前在1324年就把路易四世逐出教会,并否定他在罗马帝国中的所有权力。因此路易四世欢迎来自奥康姆的精神上和文字上的支持。奥康姆在慕尼黑度过余生,撰写了各类问题的论文,其中的一个问题是教皇对帝国权力机构不享有控制权。奥康姆也由此成为一个早期支持政教分离的倡导者。

奥康姆剃刀原则应用于创造论/进化论

今天,解释宇宙起源的主流版本,即‘大爆炸’的假设认为,那个后来“爆炸”的所谓奇点是通过‘量子波动’平白无故地产生的。据说它之后快速膨胀,最终生成了今天所看到的一切事物。但是这个理论必须假设存在一定物质才能产生波动。8 但空间或者时间出现之前,这些所说的量子波动在什么地方和什么时间发生的呢?将奥康姆的评估标准应用到‘大爆炸’理论中,我们看到这里设定了多个起因(比如凭空出现的量子波动、突然膨胀、膨胀减慢以及无法探测到的充满宇宙大部分空间的‘暗物质’和‘暗能量’,等等)。这些假设都无法自证,无法通过实验来取得,也无法用圣经权威来证明。自证是奥康姆对所有观点进行逻辑评估的一个重要因部分。‘宇宙大爆炸’理论在奥康姆剃刀原则上是完全行不通的。

要使大爆炸模型‘凑效’,进化论者就主张宇宙是由71.4%(无法观测)的暗能量和24%(不可见)的暗物质组成,能被识别的正常原子数量只占4.6%。这完全不符合“奥康姆的剃刀”原则。

而且,宇宙各处呈现智慧的设计,特别是在生物界,并且在各种天体中都是如此。9 宇宙大爆炸理论的支持者们却否认这些,因此对其解释避而不谈。然而,对所有观测结果的解释,包括我们在宇宙中清楚看到的设计和智慧,表明这个宇宙是由一位智慧设计者创造。他有权力,有能力和意愿达成这一切。

反对‘创造’概念的人认为,人类在科学发展以前就只会借助‘上帝’来解释事物。但是,若是存在一位智慧设计者,那这种说法的必然推论就是,这样一位存在者需要拥有必要的智慧来与我们沟通,告诉我们祂的创造之工。这就是我们在圣经的创世记载中所看到的,也是奥康姆所相信的。

 结论

虽然奥康姆肯定不是第一个由于坚持正统圣经信仰而受到逼迫的人,但他完全配得起‘新教徒第一人’的称号。他在14世纪的作品不仅斥责了当时的宗教腐败,而且他的‘哲学剃刀’还能在各个方面用来谴责当今那些拒绝承认上帝的无神论者。上帝不仅是我们的创造者,祂也是我们律法的制定者,我们的审判者,而且对于那些希望罪得赦免的人,这位上帝则是他们的救主。

思想上的进一步影响

奥康姆推动了一些重要逻辑定律的发展,数个世纪后这些定律综合成为以奥古斯都·德·摩根(1806-1871)命名的德·摩根定律,以下面两种公式表达:

 非(A 或 B)≡(非 A)且(非 B)

根据第一定律,有命题“间断平衡说与达尔文渐进说两者中有一个是正确”,若该命题不成立,那等于说“间断平衡说”不成立,“达尔文渐进说”也不成立。

 非(A 且 B) ≡(非 A)或(非 B)

根据第二定律,有命题“创造论与进化论都正确”,若该命题不成立,那等于说:要不是创造论不成立,要不是进化论不成立。

作者:乔纳森·萨法蒂(Jonathan Sarfati)

文章摘自于《创造》39(2)

参考资料与图片出处
1. 比如,卡尔·萨根(Carl Sagan)虚构的地外生命探索,科学家埃莉·阿罗维的科幻电影《接触》。
2. William of Ockham, Stanford Encyclopedia of Philosophy; see plato.stanford.edu/entries/ockham, p. 9. The reference given therein is “Sent. I, dist. 30, q.1.”
3. Internet Encyclopedia of Philosophy; ep.utm.edu/ockham.
4. William of Ockham, Encyclopaedia Britannica; britannica.com/biography/William-of-Ockham.
5. 教皇诏书是由天主教教会的教宗正式发布。末尾加盖铅印(印玺),后面有在位教皇的名字,以确保诏书的真实性。
6. Catholic Encyclopedia: William of Ockham.
7. 比如,克劳斯在《从无到有的宇宙:为什么存在物质而不是一片虚无》,Free Press 2012。参看评论:雷诺,D.W. 《无法对不存在上帝的宇宙进行测试》, J. Creation 27(1):30–35; creation.com/krauss-review.
8. 有时候被称为量子真空,不等于说‘没有物质’;参看Safati, J., 《起初是神创造——还是由于一场量子波动?》; creation.com/krauss.
9. Sarfati, J., By Design, Creation Book Publishers, Georgia, USA, 2008; creation.com/s/10-2-524.
10. 插图、封面:网络和《创造》图片。

蜕变-蝴蝶的美态与设计
科学探索-奇妙的宇宙
恩宠之星-地球
倒数永恒
人类–神荣耀的创造
地球–生命的庇护所
动物王国-神伟大的工作
青蛙如何变成王子
神奇
星球之旅(银河-太阳系)【第一部】
星球之旅(银河-太阳系)【第二部】
宣教士的鸦片战争
水落石出-岩石说故事
心系创造-福音驱动程式
万变不离其中-虚无的进化

发表在 圣经, 格物 | 标签为 , , , | 留下评论

【文摘】丢番图的代数方程

作者: 张和持 来源:返朴

离  x^3+y^3+z^3=42告破仅一年多,数学家们又在前些日子找到了  x^3+y^3+z^3=3  新的一组整数解。后者的前两个解颇为简单:

1^3+1^3+1^3=3
4^3+4^3+(-5)^3=3

但数十年来,第三组解迟迟没有被找到。其实我们并不是那么关心这个解究竟是多少。如果单单看这个等式,我们除了感受它的壮丽以外,并不能比没有计算机的古希腊人理解得更多(公式左滑显示):
3=569936821221962380720^3+(-569936821113563493509)^3+(-472715493453327032)^3

我可以断言,这个式子目前对数论学家而言几乎没有意义。我们能得出结果,只是因为算法效率变高了,计算机性能比50年前更强了,甚至对于解的估计也取得了进展。但这仍然是一个孤立问题,就算求出了一个解,也不会为下一个解提供任何线索,更难以帮助我们站在更高的角度理解这个问题。不光是 x^3+y^3+z^3=k ,数论学家们研究的大多数方程看起来都没有意义。这不禁让我们产生疑问,这样的代数方程看起来没有任何特殊之处,为什么我们偏要去求它们的整数解呢?

关于算法的技术细节想必没多少人会关心。我只想通过这篇文章给各位读者一个初步的印象——数论不是复杂技巧,也不是冗长计算;我们在数论中寻找的是最深刻的数学关系。

亚历山大港的温暖夏夜

从古希腊时代人们就开始研究方程。比如最为有名的直角三角形:

a^2+b^2=c^2

小学生也能找到几组整数解:(3, 4, 5),  (5, 12, 13)。这样由整系数多项式组成的方程,从那时候起就是代数研究的中心。它们有的来源于几何,也有不少纯粹是出于人类的好奇心。其中做出奠基性贡献的,当属罗马时代生活在亚历山大港的希腊数学家,丢番图(Diophantus of Alexandria)。为了纪念他,我们称这些方程为丢番图方程。关于丢番图,或许读者们还记得他的墓志铭曾出现在小学数学题中:

坟中安葬着丢番图。

多么令人惊讶,它忠实地记录了所经历的道路。

上帝给予的童年占六分之一,

又过十二分之一,两颊长胡,

再过七分之一,点燃起结婚的蜡烛。

五年之后天赐贵子,

可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓。

悲伤只有用数论(即算数,这两者在古代是同一个词)的研究去弥补,

又过四年,他也走完了人生的旅途。

不过除此之外,我们对他的生平知之甚少,其流传下来的作品只有一套《算数》(Arithmetica,大部分已遗失)。在这本书中,丢番图将他的重点放在了寻找方程的整数解和有理解。这对于今天有许多强力工具的我们并不是什么大问题——方程的解就是一个图形上所有的点。比如x+y=0  就是一条直线, y=x^2 就是一条抛物线。但古人的数学世界并不是\mathbb{R}^n  ,而是 \mathbb{Q} 。毕达哥拉斯学派认为“万物皆数”,但这些数可不是实数,而是有理数。也就是说,他们认为世间万物都是由整数和它们的商表示的。据说希帕索斯(Hippasus)因为发现 \sqrt2 而被老师毕达哥拉斯下令处决。不过如果我们站在古希腊人的视角,他们到底是怎么想的呢?

丢番图

我们可以合理地猜测,当古希腊人发现,直角边为1  的等腰三角形,其斜边不能用有理数表示时,他们首先并不是想:”啊,这不是有理数。”而是,”啊,这不是数!”相似的类比是\sqrt{(-1)} 。要是没有完备的复数理论,人们当然只能认为复数是“幽灵”;同样,没有极限以及实数理论,古人也无法想象无穷不循环小数是什么。自然,毕达哥拉斯会觉得“万物皆数”出现了漏洞。

这样就不难理解为什么古人对整数和有理数如此痴迷。他们没有笛卡尔坐标系,也就没有解析几何(当然,我不是指 C^w 上的几何)。欧几里得辉煌的学问无法与代数方程建立联系,只能借助巧妙的方法艰难前进。

比如要解 x^2+y^2=7z^2 ,我们能想到去找x^2+y^2  是 7 的倍数的情况,古人当然也能想到。而剩下的工作就是挨着去检验模 7 剩余类下的 49 种可能性( x,y 各有 7 种可能性),最后发现整数解是不存在的。但是只要把问题稍微变一下,比如说解  x^5+y^5=7z^5  ,上面的方法就无能为力了;非但如此,今天的算术几何学家们也对这个方程毫无头绪。古人就更迷惑了——即使解出再多方程,也仍然不能保证下一个方程还会解。

但同时,方程也像是永远无法穷竭的宝库摆在面前,令人神往。

还得靠业余数学家

古希腊、古罗马的数学随着古老帝国的衰落而逐渐被人遗忘,丢番图的作品要沉寂到千年以后,才能等到被另一位对数论情有独钟的数学家发扬光大。16世纪开始,《算数》才被逐渐翻译为拉丁文。其中最有名的一个版本,是1621年由巴切特翻译出版的:这本书曾经被皮埃尔·费马摆在案头。

被称为“业余数学家之王”的费马可能比大多“专业数学家”都要强,其对概率论、微积分、解析几何等分支都做出过开拓性贡献。不过他心中的最爱还是被称为数学的王冠——数论。在费马生活的年代,数学并没有什么实际用途,而他纯粹把这当玩具:或许就如同今天我们玩数独一样。每当有所发现,他就会写在《算数》的页边上。费马的很多注释后来都演变成了重要的研究方向,其中最富盛名的当属所谓的费马大定理:

当整数n > 2  时,关于x,y,z  的不定方程  x^n+y^n=z^n  没有正整数解。

他继续写道:关于这个问题,我确信我发现了一种绝妙的证法,可惜这里的空白处太小,写不下了。今天只流传下来费马对于n=4  情况的证明,不过现代观点普遍认为他当时不可能证明得了这个定理:300年后由安德鲁·怀尔斯(Andrew Wiles)找到的证明所用到的方法远非费马时代可以想象。

费马的工作正式宣布,近代意义上的数论研究开始了。不过这些与现实没有任何关系的数学并没有发展动力——数学最忌讳的就是孤立的问题。无穷小分析可以凭借直观的函数图像与物理直觉;代数的抽象结构来自于数与多项式的自然结构。可是早期的数论却不能找到更深刻的关系。难怪高斯会这样评论费马的问题:

我承认我对费马的定理没什么兴趣,这是个孤立的命题,像这样没人能证明也不能证伪的命题我随手就能写下一大串。

站在高斯的角度,他说的确实没什么毛病。费马大定理或者别的任何丢番图方程可解,或者不可解,对其他的数学分支貌似产生不了什么影响。不过从高斯至今,我们对于数论的认识已经发生了翻天覆地的变化。数论的影响已经超出了“算数游戏”的范畴哦,成为了现代数学赖以生存的源泉。

下金蛋的鸡

据说曾有人问希尔伯特,为什么不去证明费马大定理。这位大数学家回答道:我可不想杀了这只生金蛋的母鸡。这句话足以证明费马的无用之学对于数学有多么巨大的影响。读者肯定会有疑问,明明这篇文章是想解释整数解的意义,为什么要谈那么多费马大定理?我们可以用希尔伯特的话来回答:

数学的艺术在于找到一个特例,其中隐含了所有推广的胚芽。

在挑战费马大定理(或者费马猜想)的过程中,人们发现了理想之于环论的中心地位,注意到亏格与有理点数量之间的神奇关系,还建立了模形式与椭圆曲线之间美妙联系。其任何一项成果,都比代数方程有没有解这个问题本身重要的多。算术几何整个学科都得感谢费马在几百年前兴趣使然开始的研究。这样我们就很难不去怀疑:这才仅仅是一个方程,如果我们能破解所有方程中隐藏的秘密,那岂不是能让整个代数的冰山浮出水面?(费马大定理只研究正解,所以严格来说不算丢番图方程;后来也发现其存在诸多特殊之处,而大量丢番图方程的重要性至今仍然未知)

梦 碎

希尔伯特是一位伟大的梦想家,他乐观期待着数学的发展。在1900年的巴黎会议上,他提出了那著名的23个问题,其中第十个,便是关于丢番图方程的:

任给一个丢番图方程,是否存在一个通用的算法可以判断其是否有整数解?

希尔伯特内心深处一定坚信这样的算法是存在的。1930年,他作为当时最伟大的数学家,在故乡柯尼斯堡接受了采访。访谈的最后,他铿锵有力地道出了最理想主义的口号:

我们必须知道,我们必将知道。(Wir müssen wissen,wir werden wissen)

他不仅认为丢番图方程全都能解,他还进一步猜想任何数学命题都是能被人类证明的。如同他的传记中写的那样,希尔伯特就像是数学界的亚历山大大帝,满怀着梦想,要征服到世界的尽头。可才过了一年,这个预言就被天才数学家哥德尔(Kurt Gödel)证明是错的:公理体系的完备性是未知的,相容性也是未知的。不是数学方法不够巧妙 ,也不是数学家不够努力,而是数学本身的鸿沟隔绝了逻辑。人们逐渐开始怀疑,丢番图方程也没有万能的解法,从而开始寻找算法不存在的证据。

希尔伯特到了晚年,也不忍离开纳粹统治下的祖国。法西斯主义者清除了大学中的犹太人及其亲属。无数学者不堪忍受疯狂的民族主义而选择背井离乡,其中就包括了与希尔伯特亦师亦友的外尔、柯朗等人。哥廷根不再是那个全世界学者憧憬的圣地,“哥廷根之外无生活”的豪言也仿佛隔世。希尔伯特在孤独中离开了人世,在他去世后的几年里,数学家们开始转向研究丢番图方程的不可解性。不过这项工作极其复杂,直到几十年后的1970年,希尔伯特第十问才得以宣告不可解。此时希尔伯特的故乡柯尼斯堡已经从地图上消失,原本的城市成为了苏联领土加里宁格勒;与地图的变化同时到来的,还有新的时代,新的技术,以及新的数学。

新的时代

非专业人士可能会问,为什么数学家们总是固执于黎曼猜想或者是哥德巴赫猜想?它们完全有可能是错的,那到时候所有的努力不就白费了吗?当然,除了“下金蛋”这样的理由之外,数学家们还有别的理由选择相信一条猜想为真,那就是实验。你可以这样认为:数学的实验就是计算;而理论则是证明。黎曼本人就曾提出过非常巧妙的方法来计算\zeta  函数的零点。

自计算机问世以来,通过计算来验证猜想的尝试就一直没有停止过。一方面,如果能找到任何一个反例,就能终结漫长的证明之路;另一方面,在没有任何证明思路的情况下,验证有限个数的情形似乎是数学家仅有的选择。近几十年来,验证黎曼猜想的算法已经相当先进,例如 ZetaGrid 计划,其使用分布式算法,一天可以检验十亿个零点。直到2005年计划终止,他们都没有找到任何一个反例。

同黎曼猜想一样, x^3+y^3+z^3=k是否一定有整数解这个问题,数学家们目前仍毫无头绪。用庞大的计算机群去搜寻某个特定  对应的解也实属无奈之举,但这在希尔伯特的年代是无法想象的。就连欧拉这种不嫌麻烦能口算五十位小数的人,都曾提出过不成立的猜想。例如他曾猜测费马大定理的推广:x_1^n+x_2^n+...+x_k^n=y^n 在n > 2  时没有正整数解。直到1986年,人们才找到了这么一个式子:

2682440^4+15365639^4+18796760^4=20615673^4

计算机的存在显然能大大减少数学家的无用功。

此次找到  x^3+y^3+z^3=3  的新解,显然大大增强了数学家们的信心。这个问题如此困难,即便使用最为先进的算法,也得将计算任务分配给超过 40 万台电脑,其中每台需要运行 3 小时!不过相比穷举法以及早先的计算方法而言,新算法还是快了不少。根据数学家 Roger Heath-Brown 早先的工作,我们其实可以简化原方程,减少独立变量(还进一步猜想,若k\neq9n+4  ,那三立方问题就有解);两位数学家Andrew R. Booker 和Andrew V. Sutherland 在此基础上使用筛法,让算法集中搜索那些最有可能是解的数字。即便对解一无所知,也能通过强大的解析数论工具计算解的密度,这样就能预测:我们大概还得算多久才能算出正确答案。不过此番求解之快大大出乎了他们二人的预料,在求出k=42  的解之后还没两年,k=3  的新解又找到了。据此,他们估计, k=3 要是还有下一组解的话,花费的计算力将是这次的一千万倍,以目前的算法和计算机性能还遥不可及。三立方问题是否就此告一段落?k\lt1000 的未解情况是否仍有希望?目前我们还暂未可知;不过只有一点是可以确定的:数学家的脚步不会停下。

如今正是数论及其相关学科发展迅猛的年代。数学家们对代数几何充满信心:近半个世纪的发现远超过以往任何时代之和,而且发展势头也不像是要停下来的样子。但即便如此,我们对于素数,丢番图方程以及它们背后蕴含的深刻数学的了解仍仅是冰山一角。

或许可以打一个不恰当的比方。在物理学中,带有“论”(Theory)的都是那些尚不完善的框架:广义相对论不能重整化;量子场论没有严格的数学基础;弦论得不到实证,甚至某些推论与实验还不相符;而”M理论”本身就是一个猜想。人类对宇宙的了解微乎其微,但正因如此,理论物理学家才会痴迷于其中的奥秘。对于整数论(Number Theory)而言也是相同的,它的未知等待着人们探索,它的美等待着人们发现。或许人类永远都无法对整数有足够多的了解,整数论也永远不可能改名叫整数力学(Number Mechanics),不过我相信任何有志于数学的人,都能像费马和丢番图一样,在数学中找到真正的快乐,以及自己人生的意义。

参考文献
[1] https://phys.org/news/2021-03-sum-cubes-puzzle-solution.html
[2] https://www.pnas.org/content/pnas/118/11/e2022377118.full.pdf
[3] https://www.famousscientists.org/diophantus/
[4] 康斯坦丝·瑞德, 希尔伯特数学世界的亚历山大.[5] https://www.britannica.com/biography/Pierre-de-Fermat.
[6] Timothy Gowers, The Princeton companion to mathematics.

美国普特南数学竞赛题(5)
美国普特南数学竞赛题(4)
美国普特南数学竞赛题(3)
Conway: 游戏人生
牵涉到取整的数学概率游戏
著名初等数学问题集
来自自然数的挑战
有趣的自然数拆分
有关孪生素数的一个有趣猜想
素数之恋-伯恩哈德·黎曼
等分布理论简介
数学家波利亚
物理学之神奇的数
鸟和青蛙

发表在 数学 | 标签为 , , , | 留下评论

【文摘】数学、音乐与弦

作者:Eli Maor  译者 : 张岭 

很久很久以前,也许是 5000 年前的某一天,一位不知名姓的猎人发现,当他拨动猎弓的弓弦时,弓弦发出的声音具有某种特定的音高。大约 2500 年前,萨摩斯的毕达哥拉斯发现,在琴弦长度和其音高之间存在着一个定量关系,这是人们将音乐与数学联系起来的首次尝试。但是,要想更为全面地理解两者之间的关系,则要等到 18 世纪,那时,将有四位伟大的数学家致力于解决这一问题——他们试图用新近创立的微积分来寻找答案。


《音乐是怎样算成的》

如果我们拨弄吉他的琴弦,或者用琴锤敲击钢琴的琴弦,琴弦的静止状态就会受到扰动,那么此时,问题的关键就是如何确定这条紧绷的、柔韧的琴弦的形状。在前一种情形下,琴弦被赋予初始的位移;而在后一种情形下,琴弦被赋予的则是初始的速度。总之,这两种情况均给出了琴弦的“初始状态”。原则上,根据初始状态就可以确定琴弦在未来任何时间的形状。

我们拨弄琴弦的时候,会瞬间扰动其静止状态,琴弦会形成一个三角形,尽管这个三角形又长又矮(肉眼很难确定高度)。在我们放开琴弦的一瞬间,这种干扰会分成两个脉冲,沿相反的方向顺着琴弦传播开来。它们传播的速度取决于琴弦的物理参数,即撑住琴弦的张力和琴弦材料的线密度(单位长度的质量)。实际上,琴弦所起的作用相当于一个一维的波导,使信号沿着该介质传输。

如果琴弦无限长,那么这两个脉冲将沿相反的方向永远行进下去—当然,这里有个假设条件,即不存在迟滞运动的摩擦力。但实际上,琴弦的长度是有限的;其两端被紧紧固定,导致两个脉冲在两个端点间来回运动,它们会周期性地组合成“驻波”(standing wave),即一种上下运动,而琴弦上的每一个点都参与其中。这种周期性运动只能是一种以琴弦的最低频率,即基频,振动的纯粹的正弦波,或者是若干频率为基频的2、3、4、…倍的正弦波的叠加组合。这就是我们在上一章中提到的谐波,它们将琴弦分解成单个的部分,其波长分别为基本波长的1/2、1/3、1/4、…,并且每一部分的振动都彼此独立。琴弦的实际运动则是所有这些波的总和或者叠加。

18世纪的数学家面临着一个困境:如何确定琴弦被拨弄时所形成的初始三角形的形状?该三角形有一个尖锐的顶角,它会演变成许多—也许是无数个—正弦波彼此叠加在一起,每个波的形状都异常平滑。这个问题成了一场激烈辩论的焦点,几乎每位数学家都不遗余力地参与其中。他们之中,有四个名字脱颖而出:丹尼尔·贝尔努利(Daniel Bernoulli, 1700-1782),莱昂哈德·欧拉,让·勒朗·达朗贝尔(Jeanle Rond D’Alembert,1717-1783)和约瑟夫·路易·拉格朗日(Joseph Louis Lagrange,1736-1813)。下面,我们先简单介绍一下这四位主角。

丹尼尔·贝尔努利是一个显赫家族的第二代,他的家族数学家和物理学家辈出。这个家族来自瑞士巴塞尔(Basel),一座安详宁静的大学城。经过五代的传承,贝尔努利家族至少出过八位杰出的成员。这些家族成员之间相互竞争,彼此嫉妒,他们做出了很多的发现,也不断卷入因这些发现而引起的诸多论战之中。他们会就工作中的技术细节激烈辩论,而家族成员之间的论战对此更是火上浇油。

丹尼尔的父亲约翰[Johann,也被称为让(Jeanne),1667-1748],及其兄长雅各布[Jakob,也被称为雅克(Jacques)或者詹姆斯(James),1654—1705]是贝尔努利家族在数学领域取得非凡成就的第一代成员。老贝尔努利们充分利用新近创立的微积分理论,在连续介质力学的几个领域做出了重要的贡献,其中包括弹性力学、流体力学以及振动理论等。雅各布还撰写了一篇关于概率理论的、具有里程碑意义的论文,即《推想的艺术》(Ars conjectandi,该书在雅各布去世后于 1713 年出版)。丹尼尔·贝尔努利继承了父辈的事业,他在 1738 年发表的论文《流体力学》(Hydrodynamica)中提出了一个以他的姓氏命名的著名定律(即“贝尔努利定律”),为飞行理论奠定了基础。丹尼尔和父亲经常投身于相同问题的研究工作,他们分享各自的见解,但会为某些细枝末节而争吵不休。有一次,约翰由于不得不和丹尼尔一起分享巴黎科学院(Paris Academy of Sciences)的一项殊荣而大为光火,最终将儿子永远逐出门墙。在家族中,丹尼尔是唯一一位在数学理论及实验物理学方面均取得不朽成就的人,而其他人的最主要成就都是成为数学家。

在四人当中,莱昂哈德·欧拉显然是成果最为丰硕的一位。他的成果如此繁多,以至于尽管尚未全部出版,就已经堆积了大约 70 卷专著,涉及当时已知的所有数学和物理学领域,包括数论、力学、流体力学、天体力学,以及他所开创的拓扑学。以欧拉命名的定理和公式比其他任何科学家都多,其中最著名的公式有两个。一个是方程 V – E + F = 2,数值 V 为任意简单多面体(由平面围成,且不存在任何孔洞的固体)的顶点数目,E 为边的数目,F为面的数目,该方程解释了这三个数值之间的关系。另一个是谜一般的 eπi + 1 = 0,它将数学中最重要的五个常数融为一体。该公式中的三个符号里,有两个,即 e 和 i,是因为欧拉才出现在数学表达式的。另外,他还引入了函数的表示方式 f(x) 。他所发表的影响力最大的专著是两卷本的《无穷小分析引论》(Introductio in analysin infinitorum,1748),被认为是现代数学分析的奠基之作。从广义上讲,此书探讨了连续性的问题。

欧拉出生在巴塞尔,他先师从约翰·贝尔努利,之后于 1720 年入读巴塞尔大学,仅用了两年便从大学毕业。1727年,欧拉移居到俄国圣彼得堡,并在那里待了 14 年。此后,他接受腓特烈大帝(Frederick the Great)的邀请加入柏林科学院 (Berlin Academy of Sciences)。但是,国王和他的这位学者相处得并不融洽,腓特烈更喜欢那种夸夸其谈的人,而不是性格羞怯的欧拉。因此,1766 年,年近六旬的欧拉又回到了俄国,并在那里度过余生。晚年的欧拉厄运不断:他先是失去了一只眼睛的视力,接着另一只眼睛也失明了;他的房子毁于火灾,许多手稿都因此遗失;但他的厄运远不止于此,5 年之后,他的妻子撒手人寰。百折不挠的欧拉再次走进婚姻的殿堂,失明也未能阻止他继续从事研究工作。他具有强大的专注力,这使他能够完全凭借心算进行最复杂的计算。在生活中,欧拉谦逊大度地赞扬他人的工作成果,这一特点使他与学界中的其他人迥然不同。

让·勒朗·达朗贝尔是巴黎城里一位玻璃匠收养的私生子;这个刚落地的婴儿是在圣·让·勒朗教堂(Church of St. Jean-le-Rond)被人发现的,于是长大以后,他就用教堂的名字为自己命名。像同时代的大多数数学物理学家一样,他在连续介质力学和天体力学领域涉猎广泛。1743 年,达朗贝尔发表了《动力学》(Traité de dynamique),在该书中,他提出了一条公式化的定理(“达朗贝尔原理”),即任何处于外力影响下的动态系统都可被视为处于静态平衡。达朗贝尔通过改写牛顿的第二运动定律得到了自己的定理,将广为人知的 Fma 改写成 F-ma = 0,并将该公式解释为作用于系统上的所有力的总和为零。凭借该定理,达朗贝尔顺利解决了当时困扰众人的诸多问题,包括流体力学以及地球的分点岁差问题。

达朗贝尔曾担任《德尼·狄德罗大百科全书》(the Great Encyclopedia of Denis Diderot)的编辑,这部作品旨在涵盖当时人类全部的知识。但天主教会显然对此书相当不满,也许主要原因在于它以理性而非灵性作为要旨。所以,他最终放弃了自己的编辑身份。后来,达朗贝尔设法陆续得到了法国国王路易十五(Louis XV)、普鲁士统治者腓特烈二世(Frederick II),以及俄国女皇叶卡捷琳娜二世(Catherine II)的青睐。从某种程度上讲,达朗贝尔的性格颇为傲慢,有着强烈的自我意识,这无疑与他和当权者之间的联系有着密切的关系。

约瑟夫·路易·拉格朗日伯爵是四人之中最年轻的一位;当他卷入到有关振动弦问题的论战时,还是个寂寂无闻之辈。尽管他拥有法国姓名,但是在意大利都灵出生和长大的。他是家里十一个孩子中年纪最小的,也是唯一活到成年的。拉格朗日很早就展示出对数学的浓厚兴趣,并在年仅 19 岁时便成为都灵皇家炮兵学校(Royal Artillery School of Turin)的教授。1766 年,他迁居德国,接替欧拉的位置成为柏林科学院的院 长。1794 年,他被任命为著名的巴黎综合理工学院(École Polytechnique of Paris)的教授。拉格朗日的暮年备受抑郁症困扰,还未及 50 岁,他的工作成果就直线下降。于是,他将工作重心转移到管理事务方面。1793 年,在法国大革命之后,拉格朗日被任命为一个委员会的主席,该委员会负责向全世界推广重量及测度的公制度量系统,这是法国对科学界最伟大的贡献之一。

拉格朗日的主要贡献是差分方程(differential equations),以及与离散介质和连续介质相关的力学领域。他在代数和数论方面也做出了卓越的贡献。他对牛顿的三大运动定律做了公式重构,即用差分方程以及变分法(calculus of variations)的形式重新构建。原有运动定律的关注点是作用于系统的力,拉格朗日却将焦点转移到系统的能量上。拉格朗日引入了 T-U 这个量(即系统的动能与其势能之间的差值),并使其成为力学的核心概念;它也因此被称为“拉格朗日函数”(Lagrangian)。凭借这一方法,力学定律被他用一种完全通用的方式进行公式构建,而与特定坐标系的选择无关。事实上,拉格朗日将牛顿力学变成了一个纯数学的分支。他从 19 岁起就开始动手撰写,直到 52 岁时才全部完成著作《分析力学》(Mécanique analytique,1788),这部作品在理论力学领域具有里程碑般的意义。此书的写作方式更像一本抽象的数学专著,全篇没有一幅插图。

在 18 世纪,这四个人代表着欧洲数学界的精英,他们围绕振动弦的问题发表了大量信件、回忆录、论文以及演讲,在学术界掀起阵阵波澜。这几个主角在论战过程中经常变换阵营,有时候会就某些技术细节达成一致,但下一次又会相互攻讦。与现代的、更尊重事实的学术话语风格形成鲜明对比的是,他们之间的交流火药味十足,充斥着人身攻击和相互抬杠,让人不由质疑这些绅士怎么会有如此多的时间和精力做这么无聊的事情。

第一个挑起论战的是丹尼尔·贝尔努利。早在 1732 年,他就认识到琴弦具有基础频率,除此之外,若干其他纯音的频率为该基频的2、3、4、…倍,它们均能通过琴弦的振动被弹奏出来;他甚至推测存在无穷多个这种纯音。1740 年,他写道:

有多种方式能让一根绷紧的琴弦发出许多同步产生的颤音,在理论上,其数量甚至可以是无穷多个……当[通过拨动]琴弦形成一个弧形时,第一个,也是最根本的模式就出现了;接下来,琴弦会呈现出最为缓慢的振动,并发出该琴弦能产生的最低沉的乐音,此音即为所有其他乐音的基础音。另一种模式是让该琴弦产生两个弧形,则振荡将加快两倍,琴弦会发出比基础音高出一个八度的乐音。

请注意,在解释这一问题的时候,贝尔努利是如何利用音乐术语的:“琴弦”“最低沉的乐音”以及“八度”。很明显,他的双手和双耳都与真实存在的琴弦亲密接触过,这种方式与欧拉以及达朗贝尔过于抽象的理论方法相比特点鲜明、大相径庭。在他的回忆录《关于弦振动的最新理论的思考和启示》(Reflections and Enlightenments on the New Vibrations of Strings,1747-1748)中,贝尔努利写道:“在我看来,只需要关注一下弦振动的本质,不必依靠任何计算,就足以推测出相关结论。而伟大的几何学家(即达朗贝尔和欧拉)经过分析思考极其复杂和抽象的计算方法,才最终得到这一结果。”1753年,贝尔努利重新加入战团,他指出,不同的振动模式可以同时存在,并同时保持相互独立;他由此发现了叠加原理(principle of superposition)。

丹尼尔·贝尔努利或许对同行们过度使用数学方法来解决这个问题颇为不屑,但是,问题的解决的确要用到数学方法。1727 年,约翰·贝尔努利(丹尼尔的父亲)曾研究过振动弦的问题,他将弦看作一串珠子,即弦的振动被视为 n 个点状物体的共同运动。这些点彼此相邻,并通过张力与两侧的相邻点接触。这种对真实的弦进行近似的方法要求人们必须同时求n个常微分方程,那是一个相当烦琐的过程。1746 年,达朗贝尔仅用一个偏微分方程对该问题进行重新表述,该方程就是从此以后为人所熟知的“一维波动方程”(one-dimensional wave equation)。他所做的就是让 n 趋向于无穷大,则单位质量相应变小,同时相邻质量点之间的距离趋近于零。在处理与连续介质相关的问题方面,这种从离散系统向连续系统的过渡是数学方法上的一个巨大进步。

达朗贝尔在发表于 1746 年的一篇论文中,发现了波动方程的解可以用两个波来代表,它们从初始扰动开始背向传播。这两个波的形状是由弦的初始状态,即在t = 0 时,弦上每个点的位移和速度决定的,但扰动自身可能具有任意形状。这随即就引发了一个矛盾:弹拨琴弦的时候,琴弦最初会呈现为一个三角形,即两条直线在一个尖点处(此处,曲线的斜率无法定义)连接在一起;而波动方程有一个最基本的假设,即琴弦的任何位置均处于光滑状态,那么该方程的解怎么能是一个三角形呢?很快,这一矛盾便将争论转移到更加宽泛的话题:到底应该如何定义一个方程。方程能否包含一个尖点,即斜率会从一个值瞬间变成另一个值的点?函数的图象是否必须连续变化?当然,方程的概念如今已经得到了清晰的阐释,但是在 18 世纪,人们对方程的了解还很贫乏,导致相关的解释众说纷纭。

针对这一问题,贝尔努利和欧拉给出了一种不同的答案:琴弦的形状是琴弦振动所包含的所有正弦波的总和。这就完全避免了尖角问题,也更加符合振动的物理性质:毕竟,当人们弹拨吉他时,可以听见乐音,但并没有看到波沿着琴弦传播。至此,这场争论引发了一个新的问题:达朗贝尔提出的波传播的理论,以及贝尔努利提出的正弦波观点,这一对截然不同的基本事实如何才能成为同一个方程的答案?此处,我们不必讨论具体的技术细节,这会让今天的读者失去耐心;我们只需要挑出这场争论的几个片段:

作为主编以及法国大百科全书的首席数学权威,达朗贝尔从未忘记自己的这个身份,他在《弦的振动》(Vibration of Chords,1745)一文中写道:“大体上……我坚信我是第一个解决该问题的人;在我之后,欧拉先生给出了几乎完全一样的解决方法,唯一的区别就是他的法似乎更冗长一点。”贝尔努利在一封寄给欧拉的信(1750)中写道:“我没法弄清达朗贝尔先生到底想说什么……除了摘要,他给不出任何一个具体的例子。依据他的观点,一根琴弦的基本声音[频率]为1,而其他的声音[频率]分别为[基频的]2、3、4等整数[倍],我很好奇他如何得出这样的结论。他在试图模仿你,但是在他的文章中,除了他的[这种行文]风格,我找不到一点事实。”

即使是一贯温文尔雅的欧拉也逐渐失去了耐性,没心思和达朗贝尔周旋下去。1757 年,在一封寄给法国数学家皮埃尔·莫佩尔蒂(Pierre Maupertuis)的信中,他写道:

达朗贝尔先生通过论战让我们火冒三丈……他对自己的观点确信不疑,还炫耀在当初和[丹尼尔·]贝尔努利先生就流体力学进行的论战中获得了最终的胜利,尽管每个人都同意实验结果站在贝尔努利先生这边。如果达朗贝尔先生有克莱罗先生[亚历克西斯·克莱罗(Alexis Clairaut),在差分方程方面有所贡献的法国数学家]那样的坦率,他就该立刻缴械投降。但就事情的发展来看,如果法国科学院公开表示会将他的观点记录下来,那么数学科(这一章节)在很多年内都将充斥着关于振动弦问题的争论,而这些东西没有丝毫意义,因此在最后的合集中最好还是将达朗贝尔先生就该话题发表的言论压制下来。他还要求我承认从他那里剽窃了很多东西。但是,我的耐心已经耗尽了,我要让他知道,我什么都不会做,他随便到什么地方去发表他的东西,我才不会出面阻止。在《百科全书》里,他有足够多的东西填满《声明》(Claims)那篇文章。

这之后,“达朗贝尔先生不再骚扰我了,我已经下定决心,无论他发表什么针对我的言论,我都不会和他兵戎相见。”

表面上,达朗贝尔和其他“几何学家”(这是他给予自己同行的称呼)之间的分歧并不完全与学术相关。由于达朗贝尔与普鲁士国王腓特烈大帝关系特殊,而且他是柏林科学院的院长,同行们或许都曾试图与他维持良好的关系。但是,当欧拉最终与达朗贝尔决裂时,出于打击报复,后者劝说腓特烈把身为科学院首席数学家的欧拉轰走,换上拉格朗日。

在论战的后期,拉格朗日也加入战团。尽管作为一名数学物理学家,拉格朗日的声誉日隆,但在其他人已经得到的成果之外,他几乎没有任何新的进展。有时,他的数学推理难以让人信服,特别是在那篇从离散介质谈到连续介质的有关弦的论文中,他使用的逻辑漏洞百出。为掩饰这些问题,他用了大段的冗词赘句[据数学历史学家莫里斯·克莱恩(Morris Kline)所言,“基本空洞无物”]。但是,我们或许还是可以稍微谅解一下他,因为当时,拉格朗日的精力主要放在他的代表著作《分析力学》(Mécanique analytique,1788)上面。

如果就辩论的激烈程度以及主角们各具特色的鲜明性格而言,这场发生在 18 世纪的关于弦问题的论战,似乎预兆着 20 世纪 20 年代那场关于“量子力学”(quantum mechanics,简称“QM”)本质的争论。和关于弦的论战非常类似,QM争论的焦点是物质在亚原子层面是离散还是连续的。电子是否应该被视为一种物质粒子或者一个波——抑或两者皆是?“波粒二象性”(wave-particle duality)让每一个勇于钻研的理论物理学家都深陷其中,维尔纳·海森伯(Werner Heisenberg)提出了矩阵力学(matrix mechanics),与他唱对台戏的是埃尔 温·薛定谔(Erwin Schrödinger)基于连续介质的“波动方程”(wave equation)[该方程的发现受到音乐的启发,路易斯·德布罗意(Luis de Broglie)将电子围绕原子核的运动描绘成具有不同频率的波的组合,与小提琴的琴弦相类似,后者的形状是琴弦振动包含的所有正弦波的总和]。

有意思的是,量子理论的好几位先驱者在其大半生中都钟爱音乐:阿尔伯特·爱因斯坦和他那把标志性的小提琴已经成为一个传奇(很少有人知道他还弹奏钢琴),马克斯·普朗克和保罗·埃伦费斯特(Paul Ehrenfest)都是不错的钢琴家,而维尔纳·海森伯最初是想投身音乐事业,之后才转入理论物理领域。他们与这些 18 世纪的数学家形成了鲜明对比,后者喋喋不休地争论着让他们着迷的弦问题,大概除了欧拉,无人对音乐保持着基于艺术的终身爱好。他们演奏着或可被称为“数学音乐”(mathematical music)的乐曲,将毕达哥拉斯学派对数值比例的痴迷带到了一个新的高度。青年时期的欧拉,年仅 23 岁时就撰写了一部关于音乐理论的长篇大作——《一种新的音乐理论》(Tentamen novae theoriae musicae,1730)。在文中,他尝试依据“愉悦”的程度给不同的和弦标定某个数字尺度。这是一项雄心勃勃的工作,不过,据他的助手和未来的女婿尼古拉·菲斯(Nicolas Fuss)所言,“这篇论文造成的影响非常有限,对音乐家来说,它包含的几何知识过于庞杂,而在几何学家看来,它囊括的音乐知识又太过繁复。”

最终,这场关于弦的伟大论战并没有完全解决引发这一讨论的问题:如何用数学公式来确定以及表征振动弦的形状?尽管四位数学家已经接近问题的答案,但是,人们不得不再等上半个世纪,直到另一位法国人给出了最终的解决方案。关于他的故事,我们将在下一章讲述。

毫无疑问,这场论战对微积分之后的数学发展产生了深远的影响:它探索了应对连续介质问题所要使用的技术手段,而振动弦正是这类问题最简单的范例。这场论战也起到了跳板的作用,人们由此开始研究其他诸多的连续系统问题,从质量分布不均的琴弦到振动的梁、膜、钟以及气柱。简而言之,这场论战导致了人们称之为理论声学(theoretical acoustics)的诞生。但是,它对音乐是否产生了影响?毕达哥拉斯主义者的梦想就是将音乐置于数学的规范之下,但是音乐遵循着自己的道路,特立而独行,尽管存在一些明显的例外,却对数学这位睿智伙伴的影响具有免疫力。两者之间存在的亲密关系为众人称道,但这种关系在很大程度上只是一厢情愿。

本文摘选自《音乐是怎样算成的》(北京联合出版公司)第四章 。

【文摘】负负得正的道理
【软件】超级圆周率π运算器
【文摘】数学趣题汇编(12)
【文摘】大学数学竞赛题汇编(15)
【人物】Conway: 游戏人生
【科学】趣味逻辑学
【人物】布朗:他的作品影响了牛顿,支持哥白尼、坚持真理却被谋杀
【文摘】在科学的局限之外 ——​采访张首晟(三)
【文摘】在科学的局限之外 ——​采访张首晟(一)
【数学】彭罗斯镶嵌

发表在 数学, 雅致小品 | 标签为 , | 留下评论

【数学】柏拉图哲学

作者:林夏水 数学职业家 《哲学研究》

柏拉图是古希腊著名的哲学家,同时又是一个数学哲学家。他的数学哲学思想迄今仍影响着当代一些数学家和数学哲学家。现代数学研究对象的抽象性日益提高,使得数学对象的实在性或客观性成为数学家和数学哲学家关注的问题。本世纪三十年代以后,随着数学基础三大学派的争论渐趋平静,数学对象的实在性问题成为形式主义与自称柏拉图主义论战的焦点。为追溯现代数学柏拉图主义的思想渊源,本文就柏拉图的数学哲学作一探讨。

时代背景

柏拉图数学哲学思想的产生有其深刻的哲学和数学背景。在哲学方面,当时的哲学家都致力于寻找世界的本原。柏拉图跟随苏格拉底学习哲学。苏格拉底研究了伦理学中的普遍的东西、定义。例如,正义、美的本质。他继承他的老师从个别的事物中寻找普遍的东西,从现象中探求本质的传统。但他却把普遍的东西、定义与个别的东西分离开来,使之成为“单个的存在物”——理念。柏拉图还接受赫拉克利特关于“一切皆流”,无物常住的思想。但他又进一步认为,永恒变动的事物不能成为知识的对象;知识只能是对永恒不变的事物的认识。爱利亚学派的巴门尼德把可感事物的抽象归结为思想性的存在,并把它和非存在绝对对立起来。柏拉图则认为,永恒不变的存在是客观实在的,可感事物是处在存在与非存在之间。在解决理念与具体事物的关系时,他吸收了毕达哥拉斯的“摹仿说”。毕达哥拉斯学派认为,“万物皆数”,事物是“摹仿”数而存在的。柏拉图则认为事物是分有理念而存在的。这样,柏拉图就逐渐建立起他的理念论:理念与其同名的可感事物分属两个对立的世界,理念先于可感事物而独立存在;理念是本原、模型,它是永恒的、客观存在的,可感事物处于运动变化之中,它存在但不实在,它处于实在与非实在之间;可感事物是分有同名理念而存在的。如果说理念论产生的哲学背景带有思辨的性质,那么数学背景——第一次数学危机,就是一个科学事实问题。毕达哥拉斯学派发现了不可公度量,引起数学史上第一次危机。它迫使哲学家作出理论解释。可是这一重要事实常常被人忽略。这次危机及其解决,无论在数学方面还是在哲学方面都具有重大意义。就哲学意义来说,它首先动摇了毕达哥拉斯学派的“万物皆数”的自然观。

其次是它使人们认识到感性知识是不可靠的,只有理性知识才是可靠的。因为根据毕达哥拉斯学派的理论,任何事物都可以用正整数或正整数的比来表示,叫做可公度比(即具有公共度量单位)。就两条线段来说,从直观上看,总是可以找到一个公共量度单位,把两条线段都量尽,进而用整数比来表示它们,使得它们成为可公度比。但是,在数学中根据毕达哥拉斯定理却可以证明,等腰直角三角形的斜边与直角边之比却是一个无限不循环的数,也就是说,找不到一个公共量度单位使得它的整数倍等于斜边的值,或者说,等腰直角三角形的斜边与直角边是不可公度的。这一事实说明,感性直观的知识是靠不住的。作为跟随过毕达哥拉斯学派重要成员、数学家泰奥多鲁斯和阿启泰学习过数学的柏拉图是知道这次危机所引起的冲击的,所以他强调数学是研究抽象的,强调假设—演绎方法;而且他的学派的重要成员、大数学家欧多克斯建立的比例论在解决危机的过程中实现当时数学研究重心的转移方面作出重要贡献。正是感性直观知识的不可靠性,才促使柏拉图一心一意地追求可靠的知识,寻找实在的、永恒不变的知识对象——理念。另一方面,既然理念与可感事物是分立对立而存在的,它们作为认识的对象,心灵所获得的知识,一个是可靠的一个是不可靠的,那么,如何使不可靠的知识上升为可靠的知识呢?柏拉图正是在寻找知识的过渡形态过程中建立他的数学哲学理论——数学的居间性;数学对象分离独立存在于可感事物之外;理念数论及物质元素的几何结构。

数学的居间性

柏拉图认为,理念是客观实在的,而分有同名理念的具体事物虽然存在但不实在。因此,怎样使灵魂脱离变化的可见世界而进入可知的实在世界,成为他研究的重要课题之一。柏拉图正是在寻找知识的过渡形态中发现,数学不仅具有实用意义,它是“一切技术的、思想的和科学的知识都要用到的,它是大家都必须学习的最重要的东西之一”(〔1〕,522C),而且具有重要的理论意义,它是“把灵魂拖着离开变化世界进入实在世界的学问”(〔1〕,521D),即由可见世界进入可知世界的阶梯。为了说明数学的居间性,他从数学在认识论中的地位和存在不同等级的三种数来进行论证。

数学在柏拉图认识论中的居间地位

柏拉图在其认识的四阶段论中把数学定位于“比意见明确一些,但比知识要暧昧一些”的理智阶段(〔5〕,205)。他在“线喻”中阐明了这一思想。

认识的四个阶段——“线喻”

柏拉图在《国家篇》中根据知识的实在性和真实性的程度,通过“线喻”把知识分为四个等级。首先他把世界分为可见世界和可知世界两部分,然后在这两部分中按认识对象的不同再把可见世界分为:实物影象和实物本身;把可知世界划分为:以实物作影象和理念。这样,对应于不同的认识对象,就有四种不同的灵魂状态:想象、信念、理智、理性,而从可见世界获得的只能是一种意见,只有从可知世界才能获得真实的知识。其中:第1等级:以实物的影象为对象,它所对应的心理状态是想象。第2等级:以实际的东西(也就是我们周围的生物以及一切自然物和人造物)为对象,它所对应的心理状态是信念。第3等级:以实物作为影象的对象,是数学的研究对象,它是向第4等级过渡的中间阶段,它所对应的心理状态是理智。第4等级:以理念为对象,无论从实在性或真理性来说,都是最高等级的,是纯哲学研究的范围。它所对应的心理状态是理念。由此可见,柏拉图通过“线喻”不仅展现出认识的四个阶段(想象、信念、理智、理性),而且把数学的对象和知识确定为过渡性的中间阶段。

数学处于理智认识阶段

柏拉图认为,数学虽然属于可知世界,但它在研究的对象、方法、目的以及真实性等方面又不同于理性,所以它是处于从意见过渡到知识的理智阶段。在研究对象上。柏拉图认为,数学家研究的是各种图形,他把实际事物作为影象,这些“图形乃是实际的东西”,它们属于感性的事物;他们所研究的虽然不是所画的这些特殊的图形,而是图形本身,但他们所要看到的是,只有用思想才能认识到的理念。他说:“显然,他们利用各种可见的图形,谈到这些图形,但他们所思考的实际上并不是这些图形,而是这些图形所摹仿的那些东西。他们所研究的并不是他们所画的这个特殊的正方形和这个特殊的对角线等等,而是正方形本身,对角线本身等等。他们所作的图形乃是实际的东西,有其水中的影子和影象。但是他们现在又把这些东西当作影象,而他们实际要求看到的则是只有用思想才能认识到的那些理念”(〔5〕,200页)。理性的研究对象是理念,它不引用感性事物,而只引用理念。他说:“人的理性决不引用任何感性事物,而只引用理念,从一个理念到另一个理念,并且归结到理念”(〔5〕,201页)。在研究的方法和目的上。数学研究的方法是假设—演绎法,“由假设下降到结论”。例如,“研究几何、数学以及这类学问的人,在开始的时候要假定偶数与奇数、各种图形、三角形以及其他类似的东西,把这些东西看成已知的,看成绝对的假设,不觉得需要为他们自己或别人来对这些东西加以说明,而是把这些东西当作自明的。他们就从这些假设出发,通过一系列的逻辑推论而最后达到他们所要的结论”。“由于人的思想不能超出这些假设,因此人的思想不能向上活动而达到第一原理”(〔5〕,200页)。所以,几何学家所研究的东西“虽然确实属于我们所说的可知的东西一类,但是有两点除外:第一,在研究它们的过程中必须要用假设,灵魂由于不能突破与超出这些假设,因此不能向上活动而达到原理;第二,在研究它们的过程中利用了在它们下面一部分中的那些实物作影象——虽然这些实物也有自己的影象,并且是比自己的影象来得更清楚的更重的”(〔1〕,511)。而理性的研究方法是假设—辩证法,由假设上升到第一原理。他说:“至于讲到可知世界的另一部分,你会了解我指的是人的理性凭着辩证法的力量而认识到的那种东西。在这种认识活动中人的理性不是把它的假设当作绝对的起点或第一原理,而是把这些假设直截了当地当作假设,即是把它们当作暂时的起点,或者说当作跳板,以便可以从这个起点升到根本不是假设的某种东西,上升到绝对的第一原理并且在达到这种第一原理之后,又可以回过头来把握那些以这个原理为根据的、从这个原理提出来的东西,最后下降到结论”(〔5〕,201页)。

正是由于在研究方法和目的上的不同,所以他“把几何学家和研究这类学问的人的心理状态叫做理智而不叫做理性,把理智看成介于理性和意见之间的东西”(〔5〕,201页)。在知识的真实性上。柏拉图认为:由于数学在研究方法和目的上的局限性,使得它不能真正理解其研究对象,不能给假设以合理的说明,所以它虽然在某种程度上认识到实在,但只能象做梦一样,不能算做真正的知识。他说:“研究这些科学技术的人在思考感官所不能感觉到的对象时,必得要用思想,但是,由于他们是从假设出发而不能回到第一原理。因此,你不会认为他们真正理解这些对象”(〔5〕,201页)。“只有几何学及与之相关的科学,才的确在某种程度上认识到实在。但是我们也看到就连这种科学,对于事物的认识也只能象做梦一样,因为它们只是假定它们所用的假设,而不能给这些假设以合理的说明。如果你的前提是你所不能够真正知道的东西,那么这种认识如何能够算得真正的知识或真正的科学呢?”(〔5〕,205页)而理性则不同,它把假设当作跳板,并且通过辩证法达到第一原理,所以它能够给假设以合理的说明,才真正认识到实在。因此,辩证法研究的可知的实在比把假设当作第一原理的所谓科学技术的对象,具有更大的真实性。他说:“当一个人根据辩证法企图只用推理而不要任何感觉以求达到每个事物本身,并且这样坚持下去,一直到他通过纯粹的思想而认识到善本身的时候,他就达到了可知世界的极限”(〔5〕,203页)。

数学数处于可感觉数和理念数之间

柏拉图在《国家篇》讲到算术的作用时谈到“纯数”和“可见物体的数”。他说:算术“用力将灵魂向上拉,并迫使灵魂讨论纯数本身;如果有人要它讨论属于可见物体或可触物体的数,它是永远不会苟同的”(〔1〕,525D)。他在《PHILEBUS》中讲到两类算术的区别时又说到计数的不同单位和相同单位。他说:“有些算术家计数不同的单位,例如,两支军队、两头牛、两件很大的东西或两件很小的东西。反对他们的一伙人坚决认为,在一万以内的每一个单位都必须与其他单位相同”(〔10〕,56)。这里的“可见物体的数”和“计数不同的单位”在数学中叫做名数,而亚里士多德把它叫做感觉的数;而“纯数”和“每一个单位都必须与其他单位相同”的数是指抽象的数学数。这说明柏拉图认为存在着两种数,即数学的数和可感觉的数。至于第三种数即理念数,那是他在后期把理念论与毕达哥拉斯学派的“万物皆数”相结合的产物。他的学生亚里士多德在《形而上学》中就说到他认为存在着另一类数——理念数。亚里士多德说:“抽象的众数与物质世界的众数是相同的数,抑或不相同的两类数呢?柏拉图说这是不相同的;可是他也认为数可以作事物之量度,也可以成事物之原因,其分别恰是这样,事物本身的数是感觉数,为之原因之数则是理知数”(〔4〕,990a29—34)。这里讲的“理知数”是抽象的、可作事物之量度,又是事物之原因。就其抽象性和作为事物之量度而言,它类似于数学数,就其“成事物之原因”而言,它又区别于数学数。所以它只能是一种新的数——理念数。亚里士多德还在《形而上学》(1080a17—37)一书中,按数的单位的可结合性把数分成三类:1.每一个数的单位无例外地都不能结合;2.各个数的单位彼此都能互相结合,如数学数;3.有些单位可结合,有些单位不能结合。并说“有些人(指柏拉图)说两类数都存在,其中先后各数为品种有别者等同于理念,数学数既不同于理念又不同于可感事物,但这两类数与可感事物相分离”(〔4〕,1080b10—14)。“那些最初断定数有理念和数学两类的人既没有说也不能说数学之数怎样存在和由什么组成。他们把数学数安置在理念数与可感觉数之间”(〔4〕,1090b33—35)。亚里士多德在这里不仅直接讲到理念数,而且指出它的特点是,不同的理念数在性质上是不同的,其单位是不能互相结合的,但它们都与可感事物相分离。

以上说明,柏拉图确实认为存在着三种数:感觉数、数学数和理念数,而且数学数是处于中间位置的。关于数学数的居间性,除了在“线喻”中作了说明以外,这里还就数学数与理念数在生成和成为事物的原因方面的不同,作进一步说明。柏拉图在《巴门尼得斯篇》中详细地讲到数学数的生成过程:1.从“如若一是”推出`一’必然分有`是’。2.从“一”分有“是”引绎出“异”。因为“一”分有“是”说明“一”所分有的“是”与“一”自身是各异的。所以就产生“一”、“是”、“异”不同的三者。3.由一、是、异三者引绎出数:(1)从一、是、异中任选一个就产生1;(2)从一、是、异中任选一对就产生2;(3)由2加1就产生3;由于2是偶数,3是奇数,所以不仅有了奇数与偶数,而且也有了奇倍与偶倍。这样,就可通过偶倍偶数、偶倍奇数、奇倍偶数、奇倍奇数产生一切数了。所以柏拉图说:“如若一是,必然地有数”(〔2〕,143C—144A)。当然这其中还必须补充一加法才能真正产生所有的正整数(〔2〕,注249)。柏拉图的理念数论首先肯定理念是数,是事物的原因,然后指出理念数的生成原则(〔4〕,1081a14—17):一和不定的二(dyad)。既然理念数与数学数的生成不同,那么它们的计数法也不同:“数学数是这样计数的:1,2(由1与前一个1组成),3(由两个1和1组成),其余类似。而理念数是这样计数的:1,接着是不同的2(不包含第一个1),3(不包含2),其余类似”(〔11〕,1080a30—34)。正因为数学数与理念数存在着这些区别,特别是理念数是事物的原因,而数学数不是,这就决定数学数低于理念数。另一方面,感觉数是与事物的质相联系的,它的抽象程度自然比脱离事物的质的抽象的数学数低。所以,数学数必然处于中间体的地位。

数学对象的存在方式

在这个问题上,柏拉图把他在理念论中的分离说应用到数学对象上,认为数学对象分离独立存在于可感事物之外。亚里士多德认为,数学对象不可能分离独立存在于可感事物之外,并从七个方面作了反驳。这里只选取其中的四个来说明亚里士多德是怎样进行反驳和论证的。第一个论证以柏拉图关于理念的在先性、分离性和要素的非组合性为前提,推论出:如果在可感的立体之外存在一个先于并且与可感事物相分离的另一种立体,那末根据同样的道理,在可感的面、线、点之外,也应该独立存在着在先的面、线、点。也就是说,在可感的体、面、线、点之外还存在一组数学对象的体、面、线、点。根据组合物是由在先的、独立存在的要素组成的,以及面是由线组成的,线是由点组成的,就可以推出:存在两套体、三套面、四套线、五套点。那末数学家究竟研究其中那一套呢?(〔4〕,1076b13—40)第二个论证说,如果几何学的对象脱离可感事物而独立存在,那么作为数学的一部分的天文学,其对象也将脱离可感事物而独立存在,可是,天空及其各个部分怎么可能脱离可见的天空及其各部分而独立存在呢?同样,光学和声学的对象也将独立自存,否则,为什么有的对象能与可感对象相分离,有的就不能呢?(〔4〕,1077a1—9)第三个论证是,柏拉图认为,数学对象是处于理念和可感事物的中间体。根据这种观点,我们可以从理念与中间体之间再分离出另一类中间体,它既不是数也不是点,既不是空间量也不是时间。如果这是不可能的,那末数学对象也不可能与可感事物相分离而独立存在。(〔4〕,1077a9—14)第七个论证是,立体是一种本体,因为它在某种意义上已经具有完整性了。但是,线怎么能够成为本体呢?它既不是象灵魂那样作为一种形式,也不是象立体那样作为一种质料。因为我们没有关于把点、线、面放在一起的经验,如果它们也是一种物质实体,我们就应该看到把它们放在一起所组成的东西(〔11〕,1077a31—36)。他说:“假定点、线、面的定义在先,但并不是所有定义上在先的东西在本体上也在先。因为本体上在先的东西,当它与其他事物分离时,更具有独立存在的能力,而事物在定义上先于那些其定义是由事物的定义合成的事物;因此,这两种属性不是共同扩张的。因为如果属性不是脱离其本体而独立自存的(例如,`运动的’或`苍白的’),那末`苍白的’在定义上就先于苍白的人,而在本体上却不是在先的。因为它不可能分离独立存在,而总是跟随着具体事物,我所说的具体事物是指苍白的人。因此很清楚,抽象的结果并不是在先的,由于加上一些决定性因素而产生的那些东西,也不是在后的,因为我们所说的苍白的人,正是由于把一个决定性因素加给`苍白的’”(〔11〕1077b1—11)。亚里士多德通过七个方面的论证得出结论:“数学对象并不是比物体更高级的本体,它们在本性上并不先于可感事物,而只是定义上在先;它们不可能独立存在于某个地方”(〔11〕1077b11—14)。从而否定了柏拉图关于数学对象独立存在于可感事物之外的观点。

理念数论及物质元素的几何结构

柏拉图的理念论在学园内部引起争论,他自己也意识到其中的“分有说”遇到困难。所以他在晚年一方面在《巴门尼德篇》和《智者篇》中提出“通种论”,即最普遍的种有三对:存在与非存在、动与静、同与异,它们既互相区别又互相联系;它们可以互相连接而成为集体,连接越多内容越丰富,于是,`种”的集体就成为个别事物。这样,他就避免了`分有说’带来的困难。另一方面,他在“线喻”中讲到数学在认识论中具有阶梯的作用后,在《Philebus》中又明确地讲到两种算术和两种几何。他把研究“两支军队、两头牛、两件很大的东西或两件很小的东西”这类不同计数单位的算术叫做普通算术(Popular arithmetic),而把研究数的各个单位都可以互相结合的抽象数的学问,叫做哲理算术(Philosophical arithmetic)。类似地,他把研究建筑学中的测量这类生产性技艺叫做普通几何学(Popular geometry),把抽象地研究图形的几何关系的学问叫做哲理几何学(Philosophical geometry)(〔10〕,55,56)。哲理数学的提出,说明柏拉图认为数学还具有哲理性的一面,更倾向于把数学在认识中的阶梯地位提升到理性的阶段。这就为他提出理念数论奠定了思想基础。同时,他又把毕达哥拉斯学派的`数本说’(数为万物之本原)与理念论结合起来,提出一种不成文的学说——理念数论。它其所以称为不成文的学说是,因为它只是在学园内部讲课时提出的,既未正式发表也不成体系,我们只能在亚里士多德的批判中略知梗概。

理念数论的基本思想是:
1、理念是数;
2、理念数的生成原则是,一和`不定的二’(indefinitedyad);
3、理念数的实在性比数学数高一等级,因为“他们把数学数安置在理念数与可感觉数之间”(〔4〕,1090b35—36);
4、理念数与数学数的区别,在单位的可结合性上,数学数的单位无例外地彼此可以互相结合;而理念数中不同数的单位是不能结合的,如`本2’的单位不能与`本3’的单位结合,其余的理念数也如此。

在计数方面,也有区别(〔11〕,1080a24—35)。尽管理念数论因为遇到许多麻烦,而成为一种不成文的理论。但是,在柏拉图看来,既然数等同于理念,成为万物的本原,作为数学的一部分的几何学,其研究的对象——点线面体也应该成为万物的本原,所以,他在《蒂迈欧篇》用它们来构造物质元素的几何结构。他认为,构成物质世界的火、土、水、气四种元素都是物体,而每一种物体都占有体积,都是立体。立体必然被一些平面所包围,每一个平面直线图形都是由三角形组成。原始的三角形有两种:等边直角三角形和不等边直三角形。所以,“我们假设,这些三角形是火和其他物体的原始元素”(〔9〕,53C)。接着,他分别按照这两种三角形的不同组合和连接,构造出四种立方体:角锥体、立方体、八面体和二十面体。然后,根据这些立体图形的稳定性、体积的大小以及立体角的大小,结合四种元素的物理特点,分别把它们指派给火、土、气和水。他说:“我们把已经说明过其形成的那些图形分配给火、土、水和气。我们把立方体指派给土,因为在四种物体中土是最稳定的,而且最具有可塑性的,其基面最稳定的图形必定最符合那种描述;我们开头假定,如果取这些三角形作基面,那么依性质,等边三角形的面比不等边三角形的面更稳定;而且,由这两种三角形合成的两个等边面,其正方形无论从局部看还是从整体上看,都必然比三角形具有更稳定的基面。

因此,我们将尽可能维持我们的理由,如果我们把这种图形指派给土;剩下的,把最小变动的图形指派给水,把最不稳定的图形指派给火,把稳定性方面居中的图形指派给气。另一方面,我们把最小的立体指派给火,把最大的立体指派给水,把大小适中的立体指派给气。其次,把最尖的角指派给火,接着分别指派给气和水。现在在所选取的图形中,面数最少的图形角锥体(pyramid)必定是最不稳定的,因为它的棱和角是最尖锐的。第二种立体是八面体(octahedron),它在这些关系中处于第二位,第三种立体是二十面体(icosahedron),它处于第三位”(〔9〕,55d,56a,b)。因此,“可以把角锥体看作火的元素或种子;把依次生成的第二种立体图形(八面体)看作气元素;把第三种立体图形(二十面体)看作水的元素”(〔9〕,56b)。为什么这四种立体图形能够分别被看作土、水、火、气的元素呢?因为“我们必须设想,这些立体是如此之小,以致任何一种单个立体图形都是因为其小性(smallness)而看不见的,尽管把一定数目的立体图形聚合在一起时是看得见的。关于它们的数目、运动和性质,我们必须假定,上帝按照适当的比例调整它们,使得它们成为最精确、最完美的东西”(〔9〕,56b)。柏拉图除了构造四种元素的几何结构以外,还研究火、气、水这三种元素及其几何结构图形是如何转化的,用以说明宇宙间万物的多样性和复杂性以及宇宙的演化。柏拉图的物质元素的几何结构理论比德谟克利特的原子论和毕达哥拉斯学派的数本说前进了一步,他猜到物质元素具有数学形式,并用几何结构来表述。他的这一思想得到现代物理学家的肯定。

当代理论物理学家和原子物理学家W.海森伯说:“在德谟克利特的哲学中,原子是物质的永恒的、不可毁灭的单位,它们决不能互相转化。关于这个问题,现代物理学采取了明确地反对德谟克利特的唯物主义而支持柏拉图和毕达哥斯的立场。基本粒子的确不是永恒的、不可毁灭的物质单位,它们实际上能够互相转化。……,现代观点和柏拉图与毕达哥拉斯的观点的类似性还多少能进一步发展”(〔6〕,34—35页)。同时,W.海森伯也承认自己受柏拉图和毕达哥拉斯的影响:“柏拉图的《蒂迈欧篇》中的基本粒子最终不是实体,而是数学形式。`万物皆数’,这是毕达哥拉斯的名言。那时唯一应用的数学形式是这样一些几何形式,例如正多面体或构成它们表面的三角形。在现代量子论中,无疑地,基本粒子最后也还是数学形式,但具有更为复杂的性质”(〔6〕,35页)。综上所述,柏拉图是在寻找如何从可见世界进入可知世界的过程中建立他的数学哲学的:数学是使灵魂脱离变化世界进入实在世界的学问;数学对象具有居间的性质,数学家的心理状态是介乎理性与意见之间的理智;由于数学研究的对象和方法存在着局限性,所以它虽然对实在有了某种认识,但只是象做梦似地看见实在;数学对象是存在的,但它是分离独立存在于可感事物之外的。他在晚年为克服理念论的困难,把理念论与毕达哥拉斯学派的“万物皆数”的理论结合起来,提出一种不成文的理念数论,构造了物质元素的几何结构形式。

〔1〕 柏拉图:《理想国》,郭斌和、张竹明译,商务印书馆,1986.
〔2〕 柏拉图:《巴门尼得斯篇》,陈康译,商务印书馆,1982.
〔3〕柏拉图:《泰阿泰德智术之师》,严群译,商务印书馆,1963.
〔4〕亚里士多德:《形而上学》,吴寿彭译,商务印书馆,1981.
〔5〕北京大学哲学系外国哲学史教研室编译:《古希腊罗马哲学》,商务印书馆,1982.
〔6〕W.海森伯:《物理学和哲学:现代科学中的革命》,商务印书馆,1981.
〔7〕范明生:《柏拉图哲学述评》,上海人民出版社,1984.
〔8〕A.E.泰勒:《柏拉图——生平及其著作》,谢随知等译,山东人民出版社1991.
〔9〕Timaeus, The Dialogues of plato, Vol.3, B.Jowett ed., OxfordUnivetsity press, 1892 Thirded., 1924I mpression.
〔10〕Philebus, The Dialoguesof Plato, Vol.4, B.Jowett ed., Oxford University Press, 1892 Thirded., 1924 Impression.
〔11〕The Works of Aristolte,Vol. Ⅲ, W. D. Rossed., Oxford,Second, 1928.
〔12〕J. N. Findlay, Plato:The Written and Unwritten Doctrines, New York, Humanities Press, 1974.
〔13〕A. Wedberg, Plato’s Philosophyof Mathematics, Appelbergs Boktryckeri A B, 1955.
〔14〕F. M. Cornford, Plato’sCosmology, London, 1937.

美国普特南数学竞赛题(5)
美国普特南数学竞赛题(4)
美国普特南数学竞赛题(3)
Conway: 游戏人生
牵涉到取整的数学概率游戏
著名初等数学问题集
来自自然数的挑战
有趣的自然数拆分
有关孪生素数的一个有趣猜想
素数之恋-伯恩哈德·黎曼
等分布理论简介
数学家波利亚
物理学之神奇的数
鸟和青蛙

发表在 数学 | 标签为 , , , | 留下评论

【数学】厄米特Hermite

作者 : 曹则贤 :返朴

偏离天道者翻车! ——厄米特

厄米特,一位令人万分敬仰的数学巨人,在数学的各个领域都留下了不可磨灭的足迹。厄米特高中毕业即成为一流数学家但却几经波折于6年后才得以大学毕业,入选法国科学院13年后依然是个大学改作业的助教,研究成果誉满天下27年后才当上教授。他是为数不多的把自己的姓氏活成形容词的人,hermitian后面可以加上的数学概念不胜枚举,每一个学数学、学物理的人都略知一二。他是一位好老师,其学生之一是震烁古今的全才学者庞加莱。

1引子

作为一个物理系的学生,笔者是在大二的数学课上首次接触到厄米特 (Charles Hermite, 1822-1901) 这个名字的。厄米特矩阵 (Hermitian matrix) 是其转置共轭等于自身的矩阵, A=A+,写成 (复数) 矩阵元的形式则为 a_{ij}=\overline{a_{ji}} 。厄米特矩阵,如同实对称矩阵,其本征值总为实数!若 A 是 n×n 的厄米特矩阵, v 是n-维矢量,则二次型\left \langle v,Av \right \rangle =v^{T}Av 总是个实数。后来学量子力学,课本说这样的矩阵对应自伴随算符 (self-adjoint),也就是厄米特算符。这样的算符,以及对应的矩阵,是厄米特的,因为本征值是实的,故这样的算符可以对应可测量物理量。

在数学物理方程和量子力学课上, 笔者还学到了厄米特多项式 (Hermite polynomials),H_n(x)=(-1)^ne^{x^2}\frac{d^n}{dx^n}e^{-x^2} ,具体列出来有如下的三角形形式, 很美的:

H_0(x)=1
H_1(x)=2x
H_2(x)=4x^2-2
H_3(x)=8x^3-12x
H_4(x)=16x^4-48x^2+12

厄米特多项式有正交关系,对于 m≠n ,有  \int_{-\infty}^{\infty} H_m(x)H_n(x)e^{-x^2}dx=0,可以看到这里的关键是一个加了权重因子e^{-x^2} 的空间里的故事。它可以用于解量子谐振子的薛定谔方程。

以当时我能注意到的数学、物理著作里的名人来说,仅凭这两项厄米特也算是名列前茅了。这是个什么样的人呢?

图1. Charles Hermite (1822-1901)

2厄米特小传

厄米特出生于1822年 (图1),是父母七个孩子中的老六,右足有严重的残疾。在他7岁的时候,厄米特全家从洛林地区搬到了法国名城南希。厄米特可说是上了最好的中学,他先是上了Collège de Nancy,后又转往巴黎的Collège Henri IV,1840-1841从Lycée Louis-le-Grand (路易大公中学) 毕业,这是伽罗华15年前学习过的学校,指点厄米特数学的是著名数学家卡塔兰 (Eugène Charles Catalan,1814–1894)。注意,在法语中Lycée是中学,Collège也可以是中学,École (school) 可以是大学,而中学老师也可称为professor(所谓授业解惑者也)。据说和他的学长伽罗华一样,厄米特喜欢阅读欧拉、高斯和拉格朗日的著作。对一个要成为真正学者的人来说,早点遇到大学者很重要啊,阅读经典很重要啊,它其实是必由之路。

在花了整整一年时间备考以后,1842年厄米特考入了著名的巴黎工科学校(l’école polytechnique)。这是一所带有军事性质的学校,因其数学教育而闻名于世。然而,根据法国教育当局1843年新年实行的一道命令:“身体不健全者不得进入工科学系”,厄米特被拒绝入学。后来,虽经其父母周旋,1843年2月重又被批准入学,但到开学时厄米特并未回到学校,后又于1844年新年退学。据说经过了五年的自修 (after spending five years working privately towards his degree),厄米特终于在1847年7月1日通过了文学学士(baccalauréat ès lettres) 考试,当月12日通过了数学学士 (baccalauréat ès sciences mathématiques) 考试,最终于1848年5月9日获得了数学专业毕业证书 (licence ès sciences mathématiques)。毕业后,厄米特被巴黎工科学校聘用为改作业的助教和入学考试监考老师 (répétiteur et examinateur d’admission)。

厄米特1842年就发表了“五次代数方程不可解的证明”这样的一流数学成果,1856年当选法国科学院 (Académie des Sciences) 成员。然而,迟至1869年他才被母校和巴黎大学聘为数学教授,那时他的数学研究成果已是铺天盖地了。他1876年从母校退休,但在巴黎大学工作到辞世,其间于1862-1873年在巴黎高师兼职讲师。厄米特70岁生日时被授予法国“荣誉军团”高级军官衔。

3厄米特的数学成就

很难具体谈论厄米特的数学成就,因为他的数学成就太多。简单罗列一下以他的名字命名的部分数学概念,就足以让人们大为震惊。以Hermite 命名的数学概念包括但不限于以下诸条:

Cubic Hermite spline (一类三次样条)
Gauss–Hermite quadrature (二次型)
Hermite distribution (分布函数)
Hermite–Lindemann theorem (关于超越数的定理)
Hermite constant (与格点几何有关的一个常数)
The Hermite–Hadamard inequality (关于凸函数及其积分的不等式)
Hermite interpolation (插值法)
Hermite normal form (矩阵形式)
Hermite numbers(与厄米特多项式关联的整数)
Hermite polynomials (多项式)
Hermite reciprocity (关于二项式不变量的互反律)
Hermite ring (环)Hermite’s cotangent identity (余切恒等式)
Hermite’s identity (关于实数之整数倍的小数部分的恒等式)
Hermite’s problem (表述实数的问题)
Hermite’s theorem (只有有限多个数域有小于给定值的判别式)
Einstein–Hermitian vector bundle (矢量丛)
Hermitian adjoint (伴随算符)
Hermitian connection (多联络)
Hermitian form (特殊的六线性形式)
Hermitian function (函数)
Hermitian manifold/structure (多流形)
Hermitian matrix (矩阵)
Hermitian operator (算符)
Hermitian symmetric space (对称空间)
Hermitian transpose (转置)
Hermitian variety (簇,对四次型的推广)

开篇我已经说了,对于物理爱好者来说,
Hermitian operator (算符),
Hermitian matrix (矩阵),
Hermitian transpose (转置), 
Hermitian adjoint operator (伴随算符) 
Hermite polynomials (多项式),
Hermitian function (函数) ,这几个概念大家一般都很熟悉。
厄米算符,即自伴随算符,对应的矩阵表示为厄米矩阵,即转置复共轭等于自身的矩阵;厄米矩阵的本征值为实数,对应的本征矢量作为一组完备正交基构成一个矢量空间。这是初等量子力学的关键内容。

厄米特的成名一战是1842年关于一元五次代数方程不可解证明。但是因为有阿贝尔、伽罗华的工作作为对比,故而厄米特的这项成就,虽说是在上大学前就做出来的,也未为他带来多少学术声誉。然而,厄米特伟大的地方在于他能破能立。证明五次方程代数不可解是一类工作,为其找到其它可能的解表达式是另一类性质的工作。1858年,厄米特给出了五次代数方程的椭圆函数解,详情参见拙著《云端脚下》。

厄米特为人所称道的一项伟大工作是关于超越数的证明。所谓的超越数,就是不可能是代数方程根的数。1873年,厄米特证明了自然对数的基,e,是个超越数。厄米特的证明用到了一个很俏皮的积分式,e^x\int_{0}^{x}e^{-t}f(t)dt=e^xf(0)-f(x)+e^x\int_{0}^{x}e^{-t}{f}'(t)dt,这个等式最右侧一项就是把原来积分中的 f(t) 替换成了 f'(t)。继续积分下去,会出现函数 f(t) 的每一阶导数。想想多项式经过有限阶微分总会为0,这事儿会有个了断。假设函数 f(x) 是多项式,定义F(x)= {\textstyle \sum_{i=0}^{\infty}}f^{(i)}(x) ,故有e^x\int_{0}^{x}e^{-t}f(t)dt=e^xF(0)-F(x) 。注意,函数 ex 的微分还是 ex,e0=1。现在,假设 e 是某个代数方程的解,即满足方程a_0+a_1e+a_2e^2+…+a_ne^n=0 ,则有{\textstyle \sum_{k=0}^{n}} a_ke^k\int_{0}^{k}e^{-t}f(t)dt=F(0) {\textstyle \sum_{k=0}^{n}}a_ke^k- {\textstyle \sum_{k=0}^{n}}a_kF(k)。因为有代数方程,上式右侧第一项为零,故得 {\textstyle \sum_{k=0}^{n}} a_ke^k\int_{0}^{k}e^{-t}f(t)dt=- {\textstyle \sum_{k=0}^{n}}a_kF(k)。厄米特接下来选择f(t)=\frac 1{(p-1)}t^{p-1}g(t)^p ,其中,p是个任意选择的足够大的质数,g(t)=(t-1)(t-2)…(t-n),然后证明了式左侧是个非零足够大的数而右侧是个足够小的数,从而引出矛盾。这个反证法过程中用到的积分、函数的构造都很精巧,可见厄米特数学的基本功格外扎实。笔者有个感慨:大师来自对细节的深刻把握。

能证明e是超越数的人自然会瞄上π是超越数的证明。但是,这类问题的证明太耗费心神了。以笔者愚见,若证明过程没带来新的数学,这样的证明也就是个游戏而已。在一封给朋友的信中,厄米特写道: “我可不想证明π的超越性了。如果有别人从事这项事业,没有比我会更为他们的成功感到高兴的了。但是,请相信我,我的朋友,这绝对会让他们大费周折。(Je ne me hasarderai point à la recherche d’une démonstration de la transcendence du nombre π. Que d’autres tentent l’entreprise, nul ne sera plus heureux que moi de leur succès, mais croyez-m’en, mon cher ami, il ne laissera pas que de leur en coûter quelques efforts.)” 1882年,德国人林德曼(Ferdinand von Lindemann,1852-1939) 成功证明了π的超越性。

4厄米特的秉性

厄米特生来右足残疾,这让他的父母非常为他担心。据说,小时候的厄米特天性开朗,招人疼爱。1842年入巴黎工科学校一事遭遇不顺,但在这期间他却同法国数学家伯特兰(Joseph Bertrand, 1822-1900),刘维尔 (Joseph Liouville, 1809-1882),德国数学家雅可比 (Carl Gustav Jacob Jacobi,1804-1851) 建立了深厚的私交,并频繁地交流学术思想。他1848-1869年间在巴黎工科学校做了21年的助教和辅助入学考官,期间还于1856年入选法国科学院,可见其成就是为同时期的法国数学界认可的。或许是命运决定心情,厄米特终究心有不平吧,他的文字总散发着谦卑,而且还有随时准备维护他发现有优点的同事的意愿 (his willingness to fight for colleagues whose merit he discerns)。厄米特确实赢得了后辈数学家的敬重,因为他注重数学教学,善于发现激励后进。据说他的教学不是瞄着严格的细节,而是奔着激发对美且简单之事物的赞赏 (but towards exciting admiration for things simple and beautiful) 去的。厄米特的讲义对数学传播有着广泛的影响,他培养的学生中有震烁古今的全才庞加莱 (Henri Poincaré,1854-1912),学生中有此一人足以引以为傲了,估计这方面和他能相提并论的物理学家仅有索末菲一人。厄米特另一个著名的学生是Thomas Stieltjes (1856-1894), 我们学积分的时候会遇到Stieltjes积分。这个荷兰人的姓的汉译似乎没有共识。

厄米特涉猎极广,故而在别人看来他的思维完全不按照逻辑运行。据庞加莱说,“把厄米特称为逻辑学家,没有比这和事实更南辕北辙的了。(研究) 方法是以一种神秘的方式存在于厄米特的脑子里的。我觉得这就对了。做科学的所谓方法如果有迹可循,那要么是研究者真不会,要么是研究对象是没价值的伪问题或者平庸问题。

5多余的话

行文至此,忽然想聊聊什么是名人的问题。什么人是名人?从人之姓名演化的视角而言,粗略想来,有这么几种情况。一是使得自己的姓名纳入了某种现象的描述,这样的人可算名人,比如“姜太公钓鱼——愿者上钩”中的姜尚,华佗再世里的华佗,东施效颦里的东施与西施,剪影(silhouette)一词里的Etienne de Silhouette。二是把自己的姓氏活成形容词的人,比如由Isaac Newton (牛顿), Charles Hermite,Bernhard Riemann (黎曼) 的姓氏而来的newtonian, hermitian,riemannian就是数学、物理文献中常用的形容词。三是把自己的姓氏活成了名词的人,比如由Pierre-Simon Laplace (拉普拉斯), Joseph-Louis Lagrange (拉格朗日),William Rowan Hamilton (哈密顿)姓氏而来的Laplacian (拉普拉斯算子),Lagrangian (拉格朗日量)和Hamiltonian  (哈密顿量),这是数学、物理的基本概念,未来这几个概念进入小学课本也不令人惊讶。第四类是把自己的姓氏活成了动词的人, 比如陈省身 (S.S. Chern)。Chern姓作为名词见于Chern number (陈数),指一类拓扑指标,而计算一个几何体系之陈数这个劳作有如下表达:Chern it up.

厄米特一生的遭遇可能对于我们来说尤为难以接受。他1856年入选法国科学院,是名满天下的数学家,但还是在巴黎工科学校继续干了13年的助教。不过有趣的是,厄米特本人似乎安之若素。其实,人家的学校可不是那种光打鸣不下蛋的母鸡。查看一下巴黎工科学校的教师和毕业生名单,厄米特这样的杰出人物一抓一大把。再者,他们德法一带的社会讲究一码归一码,一个人不会因为一项成就获得了诺奖或者当选了某个academy, society or institution 的member or fellow (学园、学会或者机构的成员、伙计) 就必定要给个教授加乡绅的头衔。一个在数学、物理领域做出过发现的人未必就不需要完整的受教育经历,未必是个合格的教授,也未必就有指导他人研究的能力与兴趣。赢者通吃是山大王的传统,是对专业的蔑视。

参考文献

1.Charles Hermite,Considérations sur la résolution algébrique de l’équation du 5e degré,Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale, Série 1, Tome 1329-336 (1842).

2. Emile Picard (ed.), Œuvres deCharles Hermite, Gauthier-Villars, vol. I(1905); vol.II (1908); vol. III(1912).

注释

[1] He who strays from the paths traced by providence crashes. —Hadamard cited Hermite

美国普特南数学竞赛题(5)
美国普特南数学竞赛题(4)
美国普特南数学竞赛题(3)
Conway: 游戏人生
牵涉到取整的数学概率游戏
著名初等数学问题集
来自自然数的挑战
有趣的自然数拆分
有关孪生素数的一个有趣猜想
素数之恋-伯恩哈德·黎曼
等分布理论简介
数学家波利亚
物理学之神奇的数
鸟和青蛙

发表在 数学 | 标签为 , , , , | 留下评论